Advertisement

In Vitro-Transcribed (IVT)-mRNA CAR Therapy Development

  • Miliotou N. Androulla
  • Papadopoulou C. LefkotheaEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2086)

Abstract

Chimeric antigen receptor (CAR) cancer immunotherapy uses autologous immune system’s cells, genetically modified, to reinforce the immune system against cancer cells. Genetic modification is usually mediated via viral transfection, despite the risk of insertional oncogenesis and off target side effects. In vitro-transcribed (IVT)-mRNA-mediated transfection could contribute to a much safer CAR therapy, since IVT-mRNA leaves no ultimate genetic residue in recipient cells. In this chapter, the IVT-mRNA generation procedure is described, from the selection of the target of the CAR T-cells, the cloning of the template for the in vitro transcription and the development of several chemical modifications for optimizing the structure and thus the stability of the produced CAR IVT-mRNA molecules. Among various transfection methods to efficiently express the CAR molecule on T-cells’ surface, the electroporation and the cationic-lipid mediated transfection of the CAR IVT-mRNAs are described.

Key words

In vitro-transcribed (IVT) mRNA Genetic engineering Safety Chimeric antigen receptor (CAR) Cancer immunotherapy T-cell 

References

  1. 1.
    Dunn GP, Old LJ, Schreiber RD (2004) The three Es of cancer immunoediting. Annu Rev Immunol 22:329–360.  https://doi.org/10.1146/annurev.immunol.22.012703.104803CrossRefPubMedGoogle Scholar
  2. 2.
    Bridgeman JS, Hawkins RE, Hombach AA, Abken H, Gilham DE (2010) Building better chimeric antigen receptors for adoptive T cell therapy. Curr Gene Ther 10(2):77–90CrossRefGoogle Scholar
  3. 3.
    Miliotou AN, Papadopoulou LC (2018) CAR T-cell therapy: a new era in cancer immunotherapy. Curr Pharm Biotechnol 19(1):5–18.  https://doi.org/10.2174/1389201019666180418095526CrossRefPubMedGoogle Scholar
  4. 4.
    Singh N, Frey NV, Grupp SA, Maude SL (2016) CAR T cell therapy in acute lymphoblastic leukemia and potential for chronic lymphocytic leukemia. Curr Treat Options in Oncol 17(6):28.  https://doi.org/10.1007/s11864-016-0406-4CrossRefGoogle Scholar
  5. 5.
    Kochenderfer JN, Dudley ME, Kassim SH, Somerville RP, Carpenter RO, Stetler-Stevenson M, Yang JC, Phan GQ, Hughes MS, Sherry RM, Raffeld M, Feldman S, Lu L, Li YF, Ngo LT, Goy A, Feldman T, Spaner DE, Wang ML, Chen CC, Kranick SM, Nath A, Nathan DA, Morton KE, Toomey MA, Rosenberg SA (2015) Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol 33(6):540–549.  https://doi.org/10.1200/JCO.2014.56.2025CrossRefGoogle Scholar
  6. 6.
    Beavis PA, Slaney CY, Kershaw MH, Gyorki D, Neeson PJ, Darcy PK (2016) Reprogramming the tumor microenvironment to enhance adoptive cellular therapy. Semin Immunol 28(1):64–72.  https://doi.org/10.1016/j.smim.2015.11.003CrossRefPubMedGoogle Scholar
  7. 7.
    Hay KA, Hanafi LA, Li D, Gust J, Liles WC, Wurfel MM, Lopez JA, Chen J, Chung D, Harju-Baker S, Cherian S, Chen X, Riddell SR, Maloney DG, Turtle CJ (2017) Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood 130(21):2295–2306.  https://doi.org/10.1182/blood-2017-06-793141CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Fesnak A, Doherty UO (2017) Clinical development and manufacture of chimeric antigen receptor T cells and the role of leukapheresis. European Oncology & Haematology 13(1):28–34CrossRefGoogle Scholar
  9. 9.
    Suerth JD, Schambach A, Baum C (2012) Genetic modification of lymphocytes by retrovirus-based vectors. Curr Opin Immunol 24(5):598–608.  https://doi.org/10.1016/j.coi.2012.08.007CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Krug C, Wiesinger M, Abken H, Schuler-Thurner B, Schuler G, Dorrie J, Schaft N (2014) A GMP-compliant protocol to expand and transfect cancer patient T cells with mRNA encoding a tumor-specific chimeric antigen receptor. Cancer Immunol, Immunother 63(10):999–1008.  https://doi.org/10.1007/s00262-014-1572-5CrossRefGoogle Scholar
  11. 11.
    Beatty GL, Haas AR, Maus MV, Torigian DA, Soulen MC, Plesa G, Chew A, Zhao Y, Levine BL, Albelda SM, Kalos M, June CH (2014) Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol Res 2(2):112–120.  https://doi.org/10.1158/2326-6066.CIR-13-0170CrossRefGoogle Scholar
  12. 12.
    Maus MV, Haas AR, Beatty GL, Albelda SM, Levine BL, Liu X, Zhao Y, Kalos M, June CH (2013) T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunol Res 1(1):26–31.  https://doi.org/10.1158/2326-6066.CIR-13-0006CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Panjwani MK, Smith JB, Schutsky K, Gnanandarajah J, O'Connor CM, Powell DJ Jr, Mason NJ (2016) Feasibility and safety of RNA-transfected CD20-specific chimeric antigen receptor T cells in dogs with spontaneous B cell lymphoma. Mol Ther 24(9):1602–1614.  https://doi.org/10.1038/mt.2016.146CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Tasian SK, Kenderian SS, Shen F, Ruella M, Shestova O, Kozlowski M, Li Y, Schrank-Hacker A, Morrissette JJD, Carroll M, June CH, Grupp SA, Gill S (2017) Optimized depletion of chimeric antigen receptor T cells in murine xenograft models of human acute myeloid leukemia. Blood 129(17):2395–2407.  https://doi.org/10.1182/blood-2016-08-736041CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Schutsky K, Song DG, Lynn R, Smith JB, Poussin M, Figini M, Zhao Y, Powell DJ Jr (2015) Rigorous optimization and validation of potent RNA CAR T cell therapy for the treatment of common epithelial cancers expressing folate receptor. Oncotarget 6(30):28911–28928.  https://doi.org/10.18632/oncotarget.5029CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Tavernier G, Andries O, Demeester J, Sanders NN, De Smedt SC, Rejman J (2011) mRNA as gene therapeutic: how to control protein expression. J Control Release 150(3):238–247.  https://doi.org/10.1016/j.jconrel.2010.10.020CrossRefPubMedGoogle Scholar
  17. 17.
    Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL (1990) Direct gene transfer into mouse muscle in vivo. Science 247(4949 Pt 1):1465–1468CrossRefGoogle Scholar
  18. 18.
    Jirikowski GF, Sanna PP, Maciejewski-Lenoir D, Bloom FE (1992) Reversal of diabetes insipidus in Brattleboro rats: intrahypothalamic injection of vasopressin mRNA. Science 255(5047):996–998CrossRefGoogle Scholar
  19. 19.
    Conry RM, LoBuglio AF, Wright M, Sumerel L, Pike MJ, Johanning F, Benjamin R, Lu D, Curiel DT (1995) Characterization of a messenger RNA polynucleotide vaccine vector. Cancer Res 55(7):1397–1400PubMedGoogle Scholar
  20. 20.
    Boczkowski D, Nair SK, Snyder D, Gilboa E (1996) Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med 184(2):465–472CrossRefGoogle Scholar
  21. 21.
    Hoerr I, Obst R, Rammensee HG, Jung G (2000) In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. Eur J Immunol 30(1):1–7.  https://doi.org/10.1002/1521-4141(200001)30:1<1::AID-IMMU1>3.0.CO;2-#CrossRefPubMedGoogle Scholar
  22. 22.
    Pascolo S (2015) The messenger's great message for vaccination. Expert Rev Vaccines 14(2):153–156.  https://doi.org/10.1586/14760584.2015.1000871CrossRefPubMedGoogle Scholar
  23. 23.
    Plews JR, Li J, Jones M, Moore HD, Mason C, Andrews PW, Na J (2010) Activation of pluripotency genes in human fibroblast cells by a novel mRNA based approach. PLoS One 5(12):e14397.  https://doi.org/10.1371/journal.pone.0014397CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Schlaeger TM, Daheron L, Brickler TR, Entwisle S, Chan K, Cianci A, DeVine A, Ettenger A, Fitzgerald K, Godfrey M, Gupta D, McPherson J, Malwadkar P, Gupta M, Bell B, Doi A, Jung N, Li X, Lynes MS, Brookes E, Cherry AB, Demirbas D, Tsankov AM, Zon LI, Rubin LL, Feinberg AP, Meissner A, Cowan CA, Daley GQ (2015) A comparison of non-integrating reprogramming methods. Nat Biotechnol 33(1):58–63.  https://doi.org/10.1038/nbt.3070CrossRefPubMedGoogle Scholar
  25. 25.
    Sahin U, Kariko K, Tureci O (2014) mRNA-based therapeutics--developing a new class of drugs. Nat Rev Drug Discov 13(10):759–780.  https://doi.org/10.1038/nrd4278CrossRefPubMedGoogle Scholar
  26. 26.
    Hartmann J, Schussler-Lenz M, Bondanza A, Buchholz CJ (2017) Clinical development of CAR T cells-challenges and opportunities in translating innovative treatment concepts. EMBO Mol Med 9(9):1183–1197.  https://doi.org/10.15252/emmm.201607485CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Guan S, Rosenecker J (2017) Nanotechnologies in delivery of mRNA therapeutics using nonviral vector-based delivery systems. Gene Ther 24(3):133–143.  https://doi.org/10.1038/gt.2017.5CrossRefPubMedGoogle Scholar
  28. 28.
    Weissman D (2015) mRNA transcript therapy. Expert Rev Vaccines 14(2):265–281.  https://doi.org/10.1586/14760584.2015.973859CrossRefPubMedGoogle Scholar
  29. 29.
    Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A, Daley GQ, Brack AS, Collins JJ, Cowan C, Schlaeger TM, Rossi DJ (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7(5):618–630.  https://doi.org/10.1016/j.stem.2010.08.012CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Angel M, Yanik MF (2010) Innate immune suppression enables frequent transfection with RNA encoding reprogramming proteins. PLoS One 5(7):e11756.  https://doi.org/10.1371/journal.pone.0011756CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Andries O, Mc Cafferty S, De Smedt SC, Weiss R, Sanders NN, Kitada T (2015) N(1)-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. J Control Release 217:337–344.  https://doi.org/10.1016/j.jconrel.2015.08.051CrossRefPubMedGoogle Scholar
  32. 32.
    Kozak M (1987) An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 15(20):8125–8148CrossRefGoogle Scholar
  33. 33.
    Kauffman KJ, Mir FF, Jhunjhunwala S, Kaczmarek JC, Hurtado JE, Yang JH, Webber MJ, Kowalski PS, Heartlein MW, DeRosa F, Anderson DG (2016) Efficacy and immunogenicity of unmodified and pseudouridine-modified mRNA delivered systemically with lipid nanoparticles in vivo. Biomaterials 109:78–87.  https://doi.org/10.1016/j.biomaterials.2016.09.006CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Grudzien-Nogalska E, Stepinski J, Jemielity J, Zuberek J, Stolarski R, Rhoads RE, Darzynkiewicz E (2007) Synthesis of anti-reverse cap analogs (ARCAs) and their applications in mRNA translation and stability. Methods Enzymol 431:203–227.  https://doi.org/10.1016/S0076-6879(07)31011-2CrossRefPubMedGoogle Scholar
  35. 35.
    Kuhn AN, Beibetaert T, Simon P, Vallazza B, Buck J, Davies BP, Tureci O, Sahin U (2012) mRNA as a versatile tool for exogenous protein expression. Curr Gene Ther 12(5):347–361CrossRefGoogle Scholar
  36. 36.
    Lorenz C, Fotin-Mleczek M, Roth G, Becker C, Dam TC, Verdurmen WP, Brock R, Probst J, Schlake T (2011) Protein expression from exogenous mRNA: uptake by receptor-mediated endocytosis and trafficking via the lysosomal pathway. RNA Biol 8(4):627–636.  https://doi.org/10.4161/rna.8.4.15394CrossRefPubMedGoogle Scholar
  37. 37.
    Steinle H, Behring A, Schlensak C, Wendel HP, Avci-Adali M (2017) Concise review: application of in vitro transcribed messenger RNA for cellular engineering and reprogramming: progress and challenges. Stem Cells 35(1):68–79.  https://doi.org/10.1002/stem.2402CrossRefPubMedGoogle Scholar
  38. 38.
    Pardi N, Hogan MJ, Porter FW, Weissman D (2018) mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov 17(4):261–279.  https://doi.org/10.1038/nrd.2017.243CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Petersen CT, Hassan M, Morris AB, Jeffery J, Lee K, Jagirdar N, Staton AD, Raikar SS, Spencer HT, Sulchek T, Flowers CR, Waller EK (2018) Improving T-cell expansion and function for adoptive T-cell therapy using ex vivo treatment with PI3Kdelta inhibitors and VIP antagonists. Blood Adv 2(3):210–223.  https://doi.org/10.1182/bloodadvances.2017011254CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Li J, Li W, Huang K, Zhang Y, Kupfer G, Zhao Q (2018) Chimeric antigen receptor T cell (CAR-T) immunotherapy for solid tumors: lessons learned and strategies for moving forward. J Hematol Oncol 11(1):22.  https://doi.org/10.1186/s13045-018-0568-6CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Almasbak H, Walseng E, Kristian A, Myhre MR, Suso EM, Munthe LA, Andersen JT, Wang MY, Kvalheim G, Gaudernack G, Kyte JA (2015) Inclusion of an IgG1-fc spacer abrogates efficacy of CD19 CAR T cells in a xenograft mouse model. Gene Ther 22(5):391–403.  https://doi.org/10.1038/gt.2015.4CrossRefPubMedGoogle Scholar
  42. 42.
    Singh N, Liu X, Hulitt J, Jiang S, June CH, Grupp SA, Barrett DM, Zhao Y (2014) Nature of tumor control by permanently and transiently modified GD2 chimeric antigen receptor T cells in xenograft models of neuroblastoma. Cancer Immunol Res 2(11):1059–1070.  https://doi.org/10.1158/2326-6066.CIR-14-0051CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Zhao Y, Moon E, Carpenito C, Paulos CM, Liu X, Brennan AL, Chew A, Carroll RG, Scholler J, Levine BL, Albelda SM, June CH (2010) Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res 70(22):9053–9061.  https://doi.org/10.1158/0008-5472.CAN-10-2880CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Barrett DM, Zhao Y, Liu X, Jiang S, Carpenito C, Kalos M, Carroll RG, June CH, Grupp SA (2011) Treatment of advanced leukemia in mice with mRNA engineered T cells. Hum Gene Ther 22(12):1575–1586.  https://doi.org/10.1089/hum.2011.070CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Menon V, Thomas R, Ghale AR, Reinhard C, Pruszak J (2014) Flow cytometry protocols for surface and intracellular antigen analyses of neural cell types. J Vis Exp (94):52241.  https://doi.org/10.3791/52241
  46. 46.
    Kariko K, Muramatsu H, Ludwig J, Weissman D (2011) Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res 39(21):e142.  https://doi.org/10.1093/nar/gkr695CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Koblas T, Leontovyc I, Loukotova S, Kosinova L, Saudek F (2016) Reprogramming of pancreatic exocrine cells AR42J into insulin-producing cells using mRNAs for Pdx1, Ngn3, and MafA transcription factors. Mol Ther Nucleic Acids 5:e320.  https://doi.org/10.1038/mtna.2016.33CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Miliotou N. Androulla
    • 1
  • Papadopoulou C. Lefkothea
    • 1
    Email author
  1. 1.Laboratory of Pharmacology, School of Pharmacy, Faculty of Health SciencesAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations