Lentiviral Vector Production in Suspension Culture Using Serum-Free Medium for the Transduction of CAR-T Cells

  • Aline Do Minh
  • Michelle Yen Tran
  • Amine A. KamenEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2086)


The production of lentiviral vectors (LVs) in human embryonic kidney 293 (HEK293) cells using serum-free medium in a suspension culture for the transduction of chimeric antigen receptor T-cells (CAR-T) can be achieved by different methods. This chapter describes LV production by transient transfection, induction of stable packaging cell lines, and induction of stable producer cell lines.

Key words

Lentiviral vectors Serum-free medium Suspension cells Transient transfection Packaging cells Producer cells 



The authors would like to acknowledge Rénald Gilbert, Sven Ansorge, and their respective teams at NRC for providing HEK293 packaging and producer cell lines to support the research program with lentiviral vectors as well as funding from the Canada Research Chair (CRC-2403940) and Canadian Foundation for Innovation (CFI-32904).


  1. 1.
    Naldini L (2015) Gene therapy returns to centre stage. Nature 526(7573):351–360CrossRefGoogle Scholar
  2. 2.
    Escors D, Breckpot K (2010) Lentiviral vectors in gene therapy: their current status and future potential. Arch Immunol Ther Exp 58(2):107–119CrossRefGoogle Scholar
  3. 3.
    Sharon D, Kamen A (2018) Advancements in the design and scalable production of viral gene transfer vectors. Biotechnol Bioeng 115(1):25–40CrossRefGoogle Scholar
  4. 4.
    Naldini L, Trono D, Verma IM (2016) Lentiviral vectors, two decades later. Science 353(6304):1101–1102CrossRefGoogle Scholar
  5. 5.
    Merten OW, Hebben M, Bovolenta C (2016) Production of lentiviral vectors. Mol Ther Methods Clin Dev 3:16017CrossRefGoogle Scholar
  6. 6.
    Broussau S, Jabbour N, Lachapelle G et al (2008) Inducible packaging cells for large-scale production of lentiviral vectors in serum-free suspension culture. Mol Ther 16(3):500–507CrossRefGoogle Scholar
  7. 7.
    Manceur AP, Kim H, Misic V et al (2017) Scalable lentiviral vector production using stable HEK293SF producer cell lines. Hum Gene Ther Methods 28(6):330–339CrossRefGoogle Scholar
  8. 8.
    Ansorge S, Lanthier S, Transfiguracion J et al (2009) Development of a scalable process for high-yield lentiviral vector production by transient transfection of HEK293 suspension cultures. J Gene Med 11(10):868–876CrossRefGoogle Scholar
  9. 9.
    Gelinas JF, Davies LA, Gill DR et al (2017) Assessment of selected media supplements to improve F/HN lentiviral vector production yields. Sci Rep 7(1):10198CrossRefGoogle Scholar
  10. 10.
    Ansorge S, Henry O, Kamen A (2010) Recent progress in lentiviral vector mass production. Biochem Eng J 48(3):362–377CrossRefGoogle Scholar
  11. 11.
    Logan AC, Nightingale SJ, Haas DL et al (2004) Factors influencing the titer and infectivity of lentiviral vectors. Hum Gene Ther 15(10):976–988CrossRefGoogle Scholar
  12. 12.
    McCarron A, Donnelley M, McIntyre C et al (2016) Challenges of up-scaling lentivirus production and processing. J Biotechnol 240:23–30CrossRefGoogle Scholar
  13. 13.
    Wang Y, Bergelson S, Feschenko M (2018) Determination of Lentiviral Infectious Titer by a Novel Droplet Digital PCR Method. Hum Gene Ther Methods 29(2):96–103CrossRefGoogle Scholar
  14. 14.
    Tomás HA, Rodrigues AF, Carrondo MJT et al (2018) LentiPro26: novel stable cell lines for constitutive lentiviral vector production. Sci Rep 8(1):5271CrossRefGoogle Scholar
  15. 15.
    Sanber KS, Knight SB, Stephen SL et al (2015) Construction of stable packaging cell lines for clinical lentiviral vector production. Sci Rep 5:9021CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Aline Do Minh
    • 1
  • Michelle Yen Tran
    • 1
  • Amine A. Kamen
    • 1
    Email author
  1. 1.Department of BioengineeringMcGill UniversityMontrealCanada

Personalised recommendations