Advertisement

Determination of Cytotoxic Potential of CAR-T Cells in Co-cultivation Assays

  • Renata Nacasaki SilvestreEmail author
  • Pablo Diego Moço
  • Virgínia Picanço-Castro
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2086)

Abstract

Immunotherapy using T cells modified with chimeric antigen receptor (CAR) has been proven effective in the treatment of leukemia and lymphomas resistant to chemotherapy. Recent clinical studies have shown excellent responses of CAR-T cells in a variety of B cell tumors. However, it is important to validate in vitro activity of these cells, though different sorts of assays, which are capable of measuring the cytotoxic potential of these cells. In this chapter, it will be pointed two methods to evaluate CAR-T cell killing potential against B cell malignancy cell lines.

Key words

Chimeric antigen receptor Cytotoxicity Human cell line B cell malignancies 

Notes

Acknowledgments

The authors acknowledge São Paulo Research Foundation—FAPESP (2015/19017-6, 2016/08374-5), the National Council for Scientific and Technological Development—CNPq (142406/2016-3), Research, Innovation, and Dissemination Centers—RIDC (2013/08135-2), the Coordination of Improvement of Higher Level Personnel – Capes (88887.140966/2017-00) and the National Institute of Science and Technology in Stem Cell and Cell Therapy—INCTC (465539/2014-9) for financial support. The authors also acknowledge financial support from Secretaria Executiva do Ministério da Saúde (SE/MS), Departamento de Economia da Saúde, Investimentos e Desenvolvimento (DESID/SE), Programa Nacional de Apoio à Atenção Oncológica (PRONON) Process 25000.189625/2016-16.

References

  1. 1.
    Park JH, Brentjens RJ (2010) Adoptive immunotherapy for B-cell malignancies with autologous chimeric antigen receptor modified tumor targeted T cells. Discov Med 9(47):277–288PubMedPubMedCentralGoogle Scholar
  2. 2.
    Schriever F, Freedman AS, Freeman G, Messner E, Lee G, Daley J, Nadler LM (1989) Isolated human follicular dendritic cells display a unique antigenic phenotype. J Exp Med 169(6):2043–2058CrossRefGoogle Scholar
  3. 3.
    Scheuermann RH, Racila E (1995) CD19 antigen in leukemia and lymphoma diagnosis and immunotherapy. Leuk Lymphoma 18(5-6):385–397.  https://doi.org/10.3109/10428199509059636CrossRefPubMedGoogle Scholar
  4. 4.
    Uckun FM, Jaszcz W, Ambrus JL, Fauci AS, Gajl-Peczalska K, Song CW, Wick MR, Myers DE, Waddick K, Ledbetter JA (1988) Detailed studies on expression and function of CD19 surface determinant by using B43 monoclonal antibody and the clinical potential of anti-CD19 immunotoxins. Blood 71(1):13–29CrossRefGoogle Scholar
  5. 5.
    Tumaini B, Lee DW, Lin T, Castiello L, Stroncek DF, Mackall C, Wayne A, Sabatino M (2013) Simplified process for the production of anti–CD19-CAR–engineered T cells. Cytotherapy 15(11):1406–1415.  https://doi.org/10.1016/j.jcyt.2013.06.003CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Chavez JC, Locke FL (2018) CAR T cell therapy for B-cell lymphomas. Best Pract Res Clin Haematol 31(2):135–146.. S1521-6926(18)30022-7 [pii].  https://doi.org/10.1016/j.beha.2018.04.001CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Gross G, Waks T, Eshhar Z (1989) Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A 86(24):10024–10028CrossRefGoogle Scholar
  8. 8.
    Srivastava S, Riddell SR (2015) Engineering CAR-T cells: design concepts. Trends Immunol 36(8):494–502.  https://doi.org/10.1016/j.it.2015.06.004CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Gill S, Maus MV, Porter DL (2016) Chimeric antigen receptor T cell therapy: 25years in the making. Blood Rev 30(3):157–167.  https://doi.org/10.1016/j.blre.2015.10.003. S0268-960X(15)00080-6CrossRefPubMedGoogle Scholar
  10. 10.
    Zaritskaya L, Shurin MR, Sayers TJ, Malyguine AM (2010) New flow cytometric assays for monitoring cell-mediated cytotoxicity. Expert Rev Vaccines 9(6):601–616.  https://doi.org/10.1586/erv.10.49CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lieberman J (2003) The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal. Nat Rev Immunol 3(5):361–370.  https://doi.org/10.1038/nri1083nri1083CrossRefPubMedGoogle Scholar
  12. 12.
    Fischer K, Andreesen R, Mackensen A (2002) An improved flow cytometric assay for the determination of cytotoxic T lymphocyte activity. J Immunol Methods 259(1-2):159–169. doi:S0022175901005075CrossRefGoogle Scholar
  13. 13.
    Neri S, Mariani E, Meneghetti A, Cattini L, Facchini A (2001) Calcein-acetyoxymethyl cytotoxicity assay: standardization of a method allowing additional analyses on recovered effector cells and supernatants. Clin Diagn Lab Immunol 8(6):1131–1135.  https://doi.org/10.1128/CDLI.8.6.1131-1135.2001CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Aubry JP, Blaecke A, Lecoanet-Henchoz S, Jeannin P, Herbault N, Caron G, Moine V, Bonnefoy JY (1999) Annexin V used for measuring apoptosis in the early events of cellular cytotoxicity. Cytometry 37(3):197–204.  https://doi.org/10.1002/(SICI)1097-0320(19991101)37:3<197::AID-CYTO6>3.0.CO;2-LCrossRefPubMedGoogle Scholar
  15. 15.
    Zhang Y, Chen X, Gueydan C, Han J (2018) Plasma membrane changes during programmed cell deaths. Cell Res 28(1):9–21.  https://doi.org/10.1038/cr.2017.133cr2017133CrossRefPubMedGoogle Scholar
  16. 16.
    Martin SJ, Reutelingsperger CP, McGahon AJ, Rader JA, van Schie RC, LaFace DM, Green DR (1995) Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med 182(5):1545–1556CrossRefGoogle Scholar
  17. 17.
    Tario JD Jr, Muirhead KA, Pan D, Munson ME, Wallace PK (2011) Tracking immune cell proliferation and cytotoxic potential using flow cytometry. Methods Mol Biol 699:119–164.  https://doi.org/10.1007/978-1-61737-950-5_7CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Smith SM, Wunder MB, Norris DA, Shellman YG (2011) A simple protocol for using a LDH-based cytotoxicity assay to assess the effects of death and growth inhibition at the same time. PLoS One 6(11):e26908.  https://doi.org/10.1371/journal.pone.0026908.PONE-D-11-19191CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Markert CL (1984) Lactate dehydrogenase. Biochemistry and function of lactate dehydrogenase. Cell Biochem Funct 2(3):131–134.  https://doi.org/10.1002/cbf.290020302CrossRefPubMedGoogle Scholar
  20. 20.
    Chan FK, Moriwaki K, De Rosa MJ (2013) Detection of necrosis by release of lactate dehydrogenase activity. Methods Mol Biol 979:65–70.  https://doi.org/10.1007/978-1-62703-290-2_7CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Renata Nacasaki Silvestre
    • 1
    Email author
  • Pablo Diego Moço
    • 1
  • Virgínia Picanço-Castro
    • 1
  1. 1.Center for Cell-Based Therapy CTC, Regional Blood Center of Ribeirão PretoUniversity of São PauloSão PauloBrazil

Personalised recommendations