Advertisement

A Workflow for the Identification of Mycotoxin Metabolites Using Liquid Chromatography–Ion Mobility-Mass Spectrometry

  • Laura RighettiEmail author
  • Chiara Dall’Asta
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2084)

Abstract

The structural identification of phase-I and phase-II metabolites of mycotoxins is a difficult task, mostly due to the lack of standards and because of the large number of isomeric forms. Here, we describe the use of ion mobility-mass spectrometry to analyze cereal extracts and how structural information on newly discovered mycotoxins metabolites could be obtained.

Key words

Mycotoxins CCS Metabolite identification Ion mobility-mass spectrometry TWIMS 

References

  1. 1.
    Berthiller F, Crews C, Dall’Asta C, Saeger SD, Haesaert G, Karlovsky P, Oswald IP, Seefelder W, Speijers G, Stroka J (2013) Masked mycotoxins: a review. Mol Nutr Food Res 57:165–186CrossRefGoogle Scholar
  2. 2.
    Righetti L, Paglia G, Galaverna G, Dall'Asta C (2016) Recent advances and future challenges in modified mycotoxin analysis: why HRMS has become a key instrument in food contaminant research. Toxins 8:361CrossRefGoogle Scholar
  3. 3.
    Picache JA, Rose BS, Balinski A, Leaptrot KL, Sherrod SD, May JC, McLean JA (2019) Collision cross section compendium to annotate and predict multi-omic compound identities. Chem Sci 10:983–993.  https://doi.org/10.1039/C8SC04396ECrossRefPubMedGoogle Scholar
  4. 4.
    Schrimpe-Rutledge AC, Sherrod SD, McLean JA (2028) Improving the discovery of secondary metabolite natural products using ion mobility–mass spectrometry. Curr Opin Chem Biol 42:160–166CrossRefGoogle Scholar
  5. 5.
    Paglia G, Williams JP, Menikarachchi LC, Thompson JW, Tyldesley- Worster R, Halldorsson S, Rolfsson O, Moseley MA, Grant DF, Langridge J, Palsson BØ, Astarita G (2014) Ion mobility derived collision cross sections to support metabolomics applications. Anal Chem 86:3985e3993CrossRefGoogle Scholar
  6. 6.
    Chalet C, Hollebrands B, Janssen HG, Augustijns P, Duchateau G (2018) Identification of phase-II metabolites of flavonoids by liquid chromatography–ion-mobility spectrometry–mass spectrometry. Anal Bioanal Chem 410:471–482CrossRefGoogle Scholar
  7. 7.
    Righetti L, Bergmann A, Galaverna G, Rolfsson O, Paglia G, Dall’Asta C (2018) Ion mobility-derived collision cross section database: application to mycotoxin analysis. Anal Chim Acta 1014:50–57CrossRefGoogle Scholar
  8. 8.
    Zhou Z, Shen X, Zhu ZJ (2016) Advancing the large-scale CCS database for metabolomics and lipidomics at the machine learning era. Anal Chem 88:11084–11091CrossRefGoogle Scholar
  9. 9.
    Zhou Z, Xiong X, Zhu ZJ (2017) MetCCS predictor: a web server for predicting collision cross section values of metabolites in ion mobility-mass spectrometry based metabolomics. Bioinformatics 33:2235–2237CrossRefGoogle Scholar
  10. 10.
    Colby SM, Thomas DG, Nunez JR, Baxter DJ, Glaesemann KR, Brown JM, Pirrung MA, Govind N, Teeguarden JG, Metz TO, Renslow RS (2018) ISiCLE: a molecular collision cross section calculation pipeline for establishing large in silico reference libraries for compound identification. Quant Biol arXiv:1809.08378 [qbio.BM]Google Scholar
  11. 11.
    ChemAxon (2017) cxcalc, 16.11Google Scholar
  12. 12.
    Damiani T, Righetti L, Galaverna G, Suman M, Dall’Asta C (2019) Analytical issue related to fumonisins: a matter of sample comminution? Food Control 95:1–5CrossRefGoogle Scholar
  13. 13.
    Sauerschnig C, Doppler M, Bueschl C, Schuhmacher R (2018) Methanol generates numerous artifacts during sample extraction and storage of extracts in metabolomics research. Meta 8:1Google Scholar
  14. 14.
    Regueiro J, Negreira N, Berntssen MHG (2016) Ion-mobility-derived collision cross section as an additional identification point for multiresidue screening of pesticides in fish feed. Anal Chem 88:11169e11177Google Scholar
  15. 15.
    Paglia G, Astarita G (2017) Metabolomics and lipidomics using traveling-wave ion mobility mass spectrometry. Nature 12:797e813Google Scholar
  16. 16.
    Ruttkies C, Schymanski EL, Wolf S, Hollender J, Neumann S (2016) MetFrag relaunched: incorporating strategies beyond in silico fragmentation. J Cheminform 8:3CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Food and DrugUniversity of ParmaParmaItaly

Personalised recommendations