Advertisement

Untargeted Differential Metabolomics Analysis Using Drift Tube Ion Mobility-Mass Spectrometry

  • Rick ReisdorphEmail author
  • Cole Michel
  • Kevin Quinn
  • Katrina Doenges
  • Nichole Reisdorph
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2084)

Abstract

Mass spectrometry-based metabolomics is being increasingly applied to a number of applications, including the fields of clinical, industrial, plant, and nutritional science. Several improvements have advanced the field considerably over the past decade, including ultra-high performance liquid chromatography (uHPLC), column chemistries, instruments, software, and molecular databases. However, challenges remain, including how to separate small molecules that are part of highly complex samples; this can be accomplished using chromatographic techniques or through improved resolution in the gas phase. Ion mobility-mass spectrometry (IM-MS) provides an extra dimension of gas phase separation that can result in improvements to both quantitation and compound identification. Here we describe a typical drift tube IM-MS metabolomics workflow, which includes the following steps: (1) Data acquisition, (2) Data preprocessing, (3) Molecular feature finding, and (4) Differential analysis and Molecular annotation. Overall, these methods can help investigators from a variety of scientific fields use IM-MS metabolomics as part of their own workflow.

Key words

Drift tube ion mobility Metabolomics Acquisition parameters Four-dimensional feature finding Differential analysis Mass spectrometry 

References

  1. 1.
    Heischmann S, Gano LB, Quinn K, Liang L-P, Klepacki J, Christians U, Reisdorph N, Patel M (2018) Regulation of kynurenine metabolism by a ketogenic diet. J Lipid Res 59(6):958–966CrossRefGoogle Scholar
  2. 2.
    Cruickshank-Quinn CI, Mahaffey S, Justice MJ, Hughes G, Armstrong M, Bowler RP, Reisdorph R, Petrache I, Reisdorph N (2014) Transient and persistent metabolomic changes in plasma following chronic cigarette smoke exposure in a mouse model. PLoS One 9(7):e101855.  https://doi.org/10.1371/journal.pone.0101855CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Zhang X, Kew K, Reisdorph R, Sartain M, Powell R, Armstrong M, Quinn K, Cruickshank-Quinn C, Walmsley S, Bokatzian S, Darland E, Rain M, Imatani K, Reisdorph N (2017) Performance of a high-pressure liquid chromatography-ion mobility-mass spectrometry system for metabolic profiling. Anal Chem 89(12):6384–6391.  https://doi.org/10.1021/acs.analchem.6b04628CrossRefPubMedGoogle Scholar
  4. 4.
    Cruickshank-Quinn C, Quinn KD, Powell R, Yang Y, Armstrong M, Mahaffey S, Reisdorph R, Reisdorph N (2014) Multi-step preparation technique to recover multiple metabolite compound classes for in-depth and informative metabolomic analysis. J Vis Exp 89:51670.  https://doi.org/10.3791/51670CrossRefGoogle Scholar
  5. 5.
    Zhang X, Romm M, Zheng X, Zink EM, Kim Y-M, Burnum-Johnson KE, Orton DJ, Apffel A, Ibrahim YM, Monroe ME, Moore RJ, Smith JN, Ma J, Renslow RS, Thomas DG, Blackwell AE, Swinford G, Sausen J, Kurulugama RT, Eno N, Darland E, Stafford G, Fjeldsted J, Metz TO, Teeguarden JG, Smith RD, Baker ES (2016) SPE-IMS-MS: an automated platform for sub-sixty second surveillance of endogenous metabolites and xenobiotics in biofluids. Clin Mass Spectrom 2:1–10.  https://doi.org/10.1016/j.clinms.2016.11.002CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Belov ME, Clowers BH, Prior DC, Danielson Iii WF, Liyu AV, Petritis BO, Smith RD (2008) Dynamically multiplexed ion mobility time-of-flight mass spectrometry. Anal Chem 80(15):5873–5883.  https://doi.org/10.1021/ac8003665CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Liu W, Zhang X, Knochenmuss R, Siems WF, Hill HH (2016) Multidimensional separation of natural products using liquid chromatography coupled to hadamard transform ion mobility mass spectrometry. J Am Soc Mass Spectrom 27(5):810–821.  https://doi.org/10.1007/s13361-016-1346-8CrossRefPubMedGoogle Scholar
  8. 8.
    Stow SM, Causon TJ, Zheng X, Kurulugama RT, Mairinger T, May JC, Rennie EE, Baker ES, Smith RD, McLean JA, Hann S, Fjeldsted JC (2017) An interlaboratory evaluation of drift tube ion mobility–mass spectrometry collision cross section measurements. Anal Chem 89(17):9048–9055.  https://doi.org/10.1021/acs.analchem.7b01729CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Zheng X, Aly NA, Zhou Y, Dupuis KT, Bilbao A, Paurus VL, Orton DJ, Wilson R, Payne SH, Smith RD, Baker ES (2017) A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem Sci 8(11):7724–7736.  https://doi.org/10.1039/c7sc03464dCrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ridenour WB, Kliman M, McLean JA, Caprioli RM (2010) Structural characterization of phospholipids and peptides directly from tissue sections by MALDI traveling-wave ion mobility-mass spectrometry. Anal Chem 82(5):1881–1889.  https://doi.org/10.1021/ac9026115CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zhou Z, Tu J, Xiong X, Shen X, Zhu Z-J (2017) LipidCCS: prediction of collision cross-section values for lipids with high precision to support ion mobility–mass spectrometry-based lipidomics. Anal Chem 89(17):9559–9566.  https://doi.org/10.1021/acs.analchem.7b02625CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Rick Reisdorph
    • 1
    Email author
  • Cole Michel
    • 1
  • Kevin Quinn
    • 1
  • Katrina Doenges
    • 1
  • Nichole Reisdorph
    • 1
  1. 1.Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical SciencesUniversity of ColoradoAuroraUSA

Personalised recommendations