pp 1-15 | Cite as

In Situ Determination of Genotoxic Effects in Fish Erythrocytes Using Comet and Micronucleus Assays

  • Paula Suares Rocha
  • Björn Deutschmann
  • Henner Hollert
Part of the Methods in Pharmacology and Toxicology book series


Genotoxic pollutants are a major concern nowadays, since they can interact with the genetic material of exposed organisms, which may initiate a cascade of damages that may lead to endangerment from molecular to the community levels. The comet and the micronucleus assays performed with fish erythrocytes can be used to identify extrachromosomal DNA adducts in situ resulting from strand breaks, chromosomal breaks, or aneugenic effects. These two assays, performed as both in vitro and in situ, have been successfully applied to detect genotoxic potentials of environmental samples in several monitoring studies. In situ bioassays reflect the real exposure situation of an environment; thus, they may be useful to confirm or falsify the potential toxicity revealed by in vitro bioassays. Hence, this chapter presents a general guideline to perform in situ comet and micronucleus assays, using fish erythrocytes, as well as some important observations that can be used to minimize possible technical errors.


In situ investigation Genotoxicity DNA damage Complex mixtures 



Björn Deutschmann was financed by SOLUTIONS project (European Union’s Seventh Framework Program for research, technological development, and demonstration), under Grant Agreement No. 603437.


  1. 1.
    Claxton LD, Matthews PP, Warren SH (2004) The genotoxicity of ambient outdoor air, a review: Salmonella mutagenicity. Mutat Res 567:347–399Google Scholar
  2. 2.
    Mídio AF, Martins DI (2000) Toxicologia de alimentos. Varela, São PauloGoogle Scholar
  3. 3.
    Pilot H, Dragan Y (1996) Chemical carcinogenesis, 5th edn. McGraw Hill, New York, pp 201–267Google Scholar
  4. 4.
    Matsumoto ST, Mantovani MS, Malagutti MIA, Dias AL, Fonseca IC, Marin-Morales MA (2006) Genotoxicity and mutagenicity of water contaminated with tannery effluents, as evaluated by the micronucleus test and Comet assay using the fish Oreochromis niloticus and chromosome aberrations in onion root-tips. Genet Mol Biol 29:148–158Google Scholar
  5. 5.
  6. 6.
    Arnaiz RR (1995) Las toxinas Ambientales y sus Efectos Genéticos. 2nd edn. MéxicoGoogle Scholar
  7. 7.
    Chen G, White PA (2004) The mutagenic hazards of aquatic sediments: a review. Mutat Res 567:151–225Google Scholar
  8. 8.
    Wogan G, Gorelick NJ (1985) Chemical and biochemical dosimetry of exposure to genotoxic chemicals. Environ Health Perspect 62:5–18Google Scholar
  9. 9.
    Ohe T, Watanabe T, Wakabayashi K (2004) Mutagens in surface waters: a review. Mutat Res 567:109–149Google Scholar
  10. 10.
    Suares-Rocha P, Luvizotto GL, Kosmehl T, Böttcher M, Storch V, Braunbeck T, Hollert H (2009) Sediment genotoxicity in the Tiete River (São Paulo, Brazil): in vitro Comet assay versus in situ micronucleus assay studies. Ecotoxicol Environ Saf 72:1842–1848Google Scholar
  11. 11.
    Pampanin DM, Brooks SJ, Grøsvik BE, Le Goff J, Meier S, Sydnes MO (2017) DNA adducts in marine fish as biological marker of genotoxicity in environmental monitoring: the way forward. Mar Environ Res 125:49–62Google Scholar
  12. 12.
    Deutschmann B, Kolarevic S, Brack W, Kaisarevic S, Kostic J, Kracun-Kolarevic M, Liska I, Paunovic M, Seiler TB, Shao Y, Sipos S, Slobodnik J, Teodorovic I, Vukovic-Gacic B, Hollert H (2016) Longitudinal profiles of the genotoxic potential of the River Danube on erythrocytes of wild fish assessed using the Comet and micronucleus assay. Sci Total Environ 573:1441–1449Google Scholar
  13. 13.
    Shugart LR, McCarthy JF, Halbrook RS (1992) Biological markers of environmental and ecological contamination: an overview. Risk Anal 12:353–360Google Scholar
  14. 14.
    Ankley GT, Bennett RS, Erickson RJ, Hoff DJ, Hornung MW, Johnson RD, Mount DR, Nichols JW, Russom CL, Schmieder PK, Serrano JA, Tietge JE, Villeneuve DL (2010) Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem 29:730–741Google Scholar
  15. 15.
    Szefer P, Szefer K, Skwarzec B (1990) Distribution of trace metals in some representative fauna of the Southern Baltic. Mar Pollut Bull 21:60–62Google Scholar
  16. 16.
    De Flora S, Vigario L, D’Agostini F, Camoirano A, Bagnasco M, Bennecelli C, Melodia F, Arillo A (1993) Multiple biomarkers in fish exposed in situ to polluted river water. Mutat Res 319:167–177Google Scholar
  17. 17.
    Al-Sabti K, Metcalfe CD (1995) Fish micronuclei for assessing genotoxicity in water. Mutat Res 343:121–135Google Scholar
  18. 18.
    Hallare AV, Seiler T-B, Hollert H (2011) The versatile, changing, and advancing roles of fish in sediment toxicity assessment—a review. J Soil Sediment 11:141–173Google Scholar
  19. 19.
    Pantaleao SM, Alcantara AV, Alves JP, Spano MA (2006) The piscine micronucleus test to assess the impact of pollution on the Japaratuba River in Brazil. Environ Mutagen 47:219–224Google Scholar
  20. 20.
    Visnjic-Jeftic Z, Jaric I, Jovanovic L, Skoric S, Smederevac-Lalic M, Nikcevic M, Lenhardt M (2010) Heavy metal and trace element accumulation in muscle, liver and gills of the Pontic shad (Alosa immaculata Bennet 1835) from the Danube River (Serbia). Microchem J 95:341–344Google Scholar
  21. 21.
    Vlastos D, Antonopoulou M, Konstantinou I (2016) Evaluation of toxicity and genotoxicity of 2-chlorophenol on bacteria, fish and human cells. Sci Total Environ 551–552:649–655Google Scholar
  22. 22.
    Keiter S, Rastall A, Kosmehl T, Erdinger L, Braunbeck T, Hollert H (2006) Ecotoxicological assessment of sediment, suspended matter and water samples in the Upper Danube River. A pilot study in search for the causes for the decline of fish catches. Environ Sci Pollut Res 13:308–319Google Scholar
  23. 23.
    Faßbender C, Braunbeck T (2013) Reproductive and genotoxic effects in zebrafish after chronic exposure to methyl methanesulfonate in a multigeneration study. Ecotoxicology 22:825–837Google Scholar
  24. 24.
    Bakr MN, Aboelhassan MD, Elgindy A, Gad NS, Mahrous KF (2016) Genotoxic and histopathological effects of water pollutants in three population fish (Oreochromis niloticus) in Egypt. Int J Pharm Sci Rev Res 38:206–215Google Scholar
  25. 25.
    Minissi S, Ciccotti E, Rizzoni M (1996) Micronucleus test in erythrocytes of Barbus plebejus (Teleostei, Pisces) from two natural environments: a bioassay for the in situ detection of mutagens in freshwater. Mutat Res 367:245–251Google Scholar
  26. 26.
    Kosmehl T, Hallare AV, Reifferscheid G, Manz W, Braunbeck T, Hollert H (2006) A novel contact assay for testing genotoxicity of chemicals and whole sediments in zebrafish embryos. Environ Toxicol Chem 25:2097–2106Google Scholar
  27. 27.
    Seitz N, Boettcher M, Keiter S, Kosmehl T, Manz W, Hollert H, Braunbeck T (2008) A novel statistical approach for the evaluation of Comet assay data. Mutat Res 652:38–45Google Scholar
  28. 28.
    Chapman PM, Hollert H (2006) Should the sediment quality triad become a tetrad, a pentad, or possibly even a hexas? J Soil Sediment 6:4–8Google Scholar
  29. 29.
    Kosmehl T, Krebs W, Fand M, Erdinger L, Braunbeck T, Hollert H (2004) Comparative genotoxicity testing of Rhine river sediment extracts using the permanent cell lines RTG-2 and RTL-W1 in the Comet assay and Ames assay. J Soil Sediment 4:84–94Google Scholar
  30. 30.
    Boettcher M, Grund S, Keiter S, Kosmehl T, Reifferscheid G, Seitz N, Rocha P, Hollert H, Braunbeck T (2010) Comparison of in vitro and in situ genotoxicity in the Danube River by means of the Comet assay and the micronucleus test. Mutat Res 700:11–17Google Scholar
  31. 31.
    Cotelle S, Farard JF (1999) Comet assay in genetic ecotoxicology: a review. Environ Mol Mutagen 34:246–255Google Scholar
  32. 32.
    Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191Google Scholar
  33. 33.
    Lee RF, Steinert S (2003) Use of the single cell gel electrophoresis/Comet assay for detecting DNA damage in aquatic (marine and freshwater) animals. Mutat Res 544:43–64Google Scholar
  34. 34.
    Balch GC, Metcalfe CD, Huestis SY (1995) Identification of potential fish carcinogens in sediment from Hamilton Harbour, Ontario, Canada. Environ Toxicol Chem 14:79–91Google Scholar
  35. 35.
    Bolognesi C, Landini E, Perrone E, Roggieri P (2004) Cytogenetic biomonitoring of a floriculturist population in Italy: micronucleus analysis by fluorescence in situ hybridization (FISH) with an all-chromosome centromeric probe. Mutat Res 557:109–117Google Scholar
  36. 36.
    Grisolia C, Cordeiro C (2000) Variability in micronucleus induction with different mutagens applied to several species of fish. Genet Mol Biol 23:235–239Google Scholar
  37. 37.
    Metcalfe CD, Balch GC, Cairns VW, Fitzsimons JD, Dunn BP (1990) Carcinogenic and genotoxic activity of extracts from contaminated sediments in western Lake Ontario. Sci Total Environ 94:125–141Google Scholar
  38. 38.
    Simic D, Knezevic-Vukcevic J, Vukovi -Gacic B, Mitic D, Beric T, Nikolic B, Stanojevic J, Stankovic S (2002) Genotoxic effects of environmental pollutants genotoxic monitoring and detection of antigenotoxic effects. In: Vujic J (ed) Proceedings of the first international conference on environmental recovery of Yugoslavia. Institute of Nuclear Sciences VINCA, Yugoslavia, p 852Google Scholar
  39. 39.
    Suares-Rocha P (2009) Sediment ecotoxicology: identification of hazard factors and ecotoxicological risks in the Tietê River Basin (Brazil). PhD thesis, University of Heidelberg, GermanyGoogle Scholar
  40. 40.
    Palhares D, Grisolia CK (2002) Comparison between the micronucleus frequencies of kidney and gill erythrocytes in tilapia fish, following mitomycin C treatment. Genet Mol Biol 25:281–284Google Scholar
  41. 41.
    Ulupinar M, Okumus I (2002) Detection of mutagenic-carcinogenic pollutants in aquatic systems using cytogenetic methods in fish. Turk J Zool 26:141–148Google Scholar
  42. 42.
    Kato H, Shimada H (1975) Sister chromatid exchanges induced by mitomycin C: a new method of detecting DNA damage at chromosomal level. Mutat Res 28:459–464Google Scholar
  43. 43.
    Hayashi M, Morita T, Kodama Y, Sofuni T, Ishidate MJ (1990) The micronucleus assay with mouse peripheral blood reticulocytes using acridine orange-coated slides. Mutat Res 245:245–249Google Scholar
  44. 44.
    Heddle JA (1973) A rapid in vivo test for chromosomal damage. Mutat Res 18:307–317Google Scholar
  45. 45.
    Schmid W (1975) The micronucleus test. Mutat Res 31:9–15Google Scholar
  46. 46.
    Bücker A, Carvalho MS, Conceicao MB, Alves-Gomes JA (2012) Micronucleus test and Comet assay in erythrocytes of the Amazonian electric fish Apteronotus bonapartii exposed to benzene. J Braz Soc Ecotoxicol 7:65–73Google Scholar
  47. 47.
    Martins M, Ferreira AM, Costa MH, Costa PM (2015) Comparing the genotoxicity of a potentially carcinogenic and a noncarcinogenic PAH, singly, and in binary combination, on peripheral blood cells of the European Sea Bass. Environ Toxicol:1–12.
  48. 48.
    Fent K (2003) Ecotoxicological problems associated with contaminated sites. Toxicol Lett 140–141:353–365Google Scholar
  49. 49.
    Burton GA Jr, Batley GE, Chapman PM, Forbes VE, Smith EP, Reynoldson T, Schlekat CE, den Besten PJ, Bailer AJ, Green AS, Dwyer RL (2002) A weight-of-evidence framework for assessing sediment (or other) contamination: improving certainty in the decision-making process. Hum Ecol Risk Assess 8:1675–1696Google Scholar
  50. 50.
    Hull RN, Swanson S (2006) Sequential analysis of lines of evidence—an advanced weight-of-evidence approach for ecological risk assessment. Integr Environ Assess Manag 2:302–311Google Scholar
  51. 51.
  52. 52.
  53. 53.
    Fernandes IM, Bastos YF, Barreto DS, Lourenço LS, Penha JM (2017) The efficacy of clove oil as an anaesthetic and in euthanasia procedure for small-sized tropical fishes. Braz J Biol 77:444–450Google Scholar
  54. 54.
    Mitkovska VI, Dimitrov HA, Chassovnikarova TG (2017) In vivo genotoxicity аnd cytotoxicity assessment оf allowable concentrations оf nickel аnd lead: Comet assay аnd nuclear abnormalities in acridine orange stained erythrocytes of common carp (Cyprinus carpio L.). Acta Zool Bulg 8:47–56Google Scholar
  55. 55.
    Huber R, Streng S, Bauchinger M (1983) The suitability of the human lymphocyte micronucleus assay system for biological dosimetry. Mutat Res 111:185–193Google Scholar
  56. 56.
    Titenko-Holland N, Ahlborn T, Lowe X, Shang N, Smith MT, Wyrobek AJ (1998) Micronuclei and developmental abnormalities in 4-day mouse embryos after paternal treatment with acrylamide. Environ Mol Mutagen 31:206–217Google Scholar
  57. 57.
    Deutschmann B, Kolarević S, Hollert H, Kaisarević S, Kostić J, Seiler T-B, Sipos S, Teodorović I, Vuković-Gačić B (2015) Biomarkers: in-situ detection of genotoxicity of the Danube River in mussels and fish. In: Liska I, Wagner F, Sengl M, Deutsch K, Slobodnik J (eds) Joint Danube survey 3—final scientific report. International Commission for the Protection of the Danube River, pp 296–302Google Scholar
  58. 58.
    Hoshina MM, Marin-Morales MA (2010) Evaluation of the genotoxicity of petroleum refinery effluents using the Comet Assay in Oreochromis niloticus (Nile tilapia). J Braz Soc Ecotoxicol 5:75–79Google Scholar
  59. 59.
    Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/Comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221Google Scholar
  60. 60.
    Liu EH, Gibson DM (1977) Visualization of peroxidase isozymes with eugenol, a noncarcinogenic substrate. Anal Biochem 79:597–601Google Scholar
  61. 61.
    Fischer IU, Unruh GE, Dengler HJ (1990) The metabolism of eugenol in man. Xenobiotica 20:209–222Google Scholar
  62. 62.
    Dalboni SP, Campagnaro BP, Tonini CL, Vasquez EC, Meyrelles SS (2012) The concurrence of hypercholesterolemia and aging promotes DNA damage in apolipoprotein E-deficient mice. Open J Blood Dis 2:51–55Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2019

Authors and Affiliations

  • Paula Suares Rocha
    • 1
    • 2
  • Björn Deutschmann
    • 1
  • Henner Hollert
    • 1
    • 2
  1. 1.RWTH Aachen UniversityAachenGermany
  2. 2.Faculty of TechnologyUNICAMPLimeiraBrazil

Personalised recommendations