pp 1-15 | Cite as

Nematode-Based Effect Assessment in Freshwater Sediments

  • Arne HaegerbaeumerEmail author
  • Sebastian Höss
  • Walter Traunspurger
Part of the Methods in Pharmacology and Toxicology book series


Sediments provide a habitat for a very diverse fauna and considerably contribute to important ecosystem services of aquatic ecosystems. Especially soft (fine and sandy) sediments are known to be hotspots of chemical contamination. Their assessment can aid in identifying the causes of environmental stress and to trigger management actions to improve ecosystem health of the respective ecosystems. Achieving a “good ecological status” of surface waters, as required by the European Water Framework Directive, strongly depends on recognition of the chemical status of sediments. The recently developed NemaSPEAR[%]-index is a proven monitoring tool using freshwater nematodes, which are one of the most abundant and species-rich invertebrates in soft sediments, to detect chemical-induced changes in benthic communities. Using defined class boundaries, the NemaSPEAR[%] can help to categorize sediment samples according to their ecological status. Overall, the index can be a valuable tool for the classification and to prioritize environmental samples in terms of sediment management decisions. However, in situ assessments of benthic communities should be supported by sediment toxicity tests based on relevant species for these habitats. The well-established model organism Caenorhabditis elegans is a suitable representative of free-living (nematode) communities, and standardized test protocols are available to be used as supportive line-of-evidence for the assessment of environmental samples in a weight-of-evidence approach.


Caenorhabditis elegans Contamination Meiofauna NemaSPEAR Nematodes Soft sediment 


  1. 1.
    European Commission (2000) Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the community action in the field of water policy. LuxembourgGoogle Scholar
  2. 2.
    Moreno M, Semprucci F, Vezzulli L, Balsamo M, Fabiano M, Albertelli G (2011) The use of nematodes in assessing ecological quality status in the Mediterranean coastal ecosystems. Ecol Indic 11:328–336Google Scholar
  3. 3.
    Long ER, Chapman PM (1985) A sediment quality triad: measures of sediment contamination, toxicity and infaunal community composition in Puget Sound. Mar Pollut Bull 16:405–415. Scholar
  4. 4.
    Hering D, Meier C, Rawer-Jost C, Feld CK, Biss R, Zenker A, Sundermann A, Lohse S, Böhmer J (2004) Assessing streams in Germany with benthic invertebrates: selection of candidate metrics. Limnologica 34:398–415. Scholar
  5. 5.
    Giere O (2009) Meiobenthology: the microscopic motile fauna of aquatic sediments. Springer, HeidelbergGoogle Scholar
  6. 6.
    Patrício J, Adão H, Neto JM, Alves AS, Traunspurger W, Marques JC (2012) Do nematode and macrofauna assemblages provide similar ecological assessment information? Ecol Indic 14:124–137. Scholar
  7. 7.
    Beier S, Traunspurger W (2001) The meiofauna community of two small German streams as indicator of pollution. J Aquat Ecosyst Stress Recover 8:387–405. Scholar
  8. 8.
    Traunspurger W, Drews C (1996) Toxicity analysis of freshwater and marine sediments with meio- and macrobenthic organisms: a review. Hydrobiologia 328:215–261. Scholar
  9. 9.
    Traunspurger W (2002) Nematoda. In: Rundle SD, Robertson AL, Schmid-Araya JM (eds) Freshwater Meiofauna: biology and ecology. Backhuys Publishers, Leiden, pp 63–104Google Scholar
  10. 10.
    Traunspurger W (2000) The biology and ecology of lotic nematodes. Freshw Biol 44:29–45. Scholar
  11. 11.
    Haegerbaeumer A, Höss S, Heininger P, Traunspurger W (2015) Experimental studies with nematodes in ecotoxicology: an overview. J Nematol 47:11–27Google Scholar
  12. 12.
    Haegerbaeumer A, Höss S, Ristau K, Claus E, Heininger P, Traunspurger W (2017) The use of meiofauna in freshwater sediment assessments: structural and functional responses of meiobenthic communities to metal and organics contamination. Ecol Indic 78:512–525. Scholar
  13. 13.
    Höss S, Traunspurger W, Zullini A (2006) Freshwater nematodes in environmental science. In: Eyualem A, Andrássy I, Traunspurger W (eds) Freshwater nematodes: ecology and taxonomy. CABI Publishing, Wallingford, pp 144–162Google Scholar
  14. 14.
    Wilson M, Kakouli-Duarte T (2009) Nematodes as environmental indicators. CABI Publishing, WallingfordGoogle Scholar
  15. 15.
    Campana O, Simpson SL, Spadaro DA, Blasco J (2012) Sub-lethal effects of copper to benthic invertebrates explained by sediment properties and dietary exposure. Environ Sci Technol 46:6835–6842Google Scholar
  16. 16.
    Fischer F, Böhm L, Höss S, Möhlenkamp C, Claus E, Düring R-A, Schäfer S (2016) Passive dosing in chronic toxicity tests with the nematode Caenorhabditis elegans. Environ Sci Technol Technol 50:9708–9716. Scholar
  17. 17.
    Heip C, Vincx M, Vranken G (1985) The ecology of marine nematodes. Aberdeen University Press, AberdeenGoogle Scholar
  18. 18.
    Traunspurger W, Michiels I, Eyualem A (2006) Composition and distribution of free-living nematodes: global and local perspectives. In: Eyualem A, Andrássy I, Traunspurger W (eds) Freshwater nematodes: ecology and taxonomy. CABI International, Wallingford, pp 46–76Google Scholar
  19. 19.
    Majdi N, Traunspurger W (2015) Free-living nematodes in the freshwater food web: a review. J Nematol 47:28–44Google Scholar
  20. 20.
    Moens T, Traunspurger W, Bergtold M (2006) Feeding ecology of free-living benthic nematodes. In: Eyualem A, Andrássy I, Traunspurger W (eds) Freshwater nematodes: ecology and taxonomy. CABI Publishing, Wallingford, pp 105–131Google Scholar
  21. 21.
    Traunspurger W, Höss S, Witthöft-Mühlmann A, Wessels M, Güde H (2012) Meiobenthic community patterns of oligotrophic and deep Lake Constance in relation to water depth and nutrients. Fundam Appl Limnol 180:233–248Google Scholar
  22. 22.
    Bergtold M, Traunspurger W (2005) Benthic production by micro-, Meio-, and macrobenthos in the Profundal zone of an oligotrophic Lake. J North Am Benthol Soc 24:321–329. Scholar
  23. 23.
    Majdi N, Threis I, Traunspurger W (2017) It’s the little things that count: Meiofaunal density and production in the sediment of two headwater streams. Limnol Oceanogr 62:151–163. Scholar
  24. 24.
    Feiler U, Höss S, Ahlf W, Gilberg D, Hammers-Wirtz M, Hollert H, Meller M, Neumann-Hensel H, Ottermanns R, Seiler TB, Spira D, Heininger P (2013) Sediment contact tests as a tool for the assessment of sediment quality in German waters. Environ Toxicol Chem 32:144–155. Scholar
  25. 25.
    Heininger P, Höss S, Claus E, Pelzer J, Traunspurger W (2007) Nematode communities in contaminated river sediments. Environ Pollut 146:64–76. Scholar
  26. 26.
    Tuikka AI, Schmitt C, Höss S, Bandow N, von der Ohe PC, de Zwart D, de Deckere E, Streck G, Mothes S, van Hattum B, Kocan A, Brix R, Brack W, Barceló D, Sormunen AJ, Kukkonen JVK (2011) Toxicity assessment of sediments from three European river basins using a sediment contact test battery. Ecotoxicol Environ Saf 74:123–131. Scholar
  27. 27.
    Wolfram G, Höss S, Orendt C, Schmitt C, Adámek Z, Bandow N, Großschartner M, Kukkonen JVK, Leloup V, López Doval JC, Muñoz I, Traunspurger W, Tuikka A, Van Liefferinge C, von der Ohe PC, de Deckere E (2012) Assessing the impact of chemical pollution on benthic invertebrates from three different European rivers using a weight-of-evidence approach. Sci Total Environ 438:498–509. Scholar
  28. 28.
    Brinke M, Höss S, Fink G, Ternes TA, Heininger P, Traunspurger W (2010) Assessing effects of the pharmaceutical ivermectin on meiobenthic communities using freshwater microcosms. Aquat Toxicol 99:126–137. Scholar
  29. 29.
    Brinke M, Ristau K, Bergtold M, Höss S, Claus E, Heininger P, Traunspurger W (2011) Using meiofauna to assess pollutants in freshwater sediments: a microcosm study with cadmium. Environ Toxicol Chem 30:427–438. Scholar
  30. 30.
    Faupel M, Ristau K, Traunspurger W (2011) Biomass estimation across the benthic community in polluted freshwater sediment – a promising endpoint in microcosm studies? Ecotoxicol Environ Saf 74:1942–1950. Scholar
  31. 31.
    Haegerbaeumer A, Höss S, Heininger P, Traunspurger W (2018) Response of nematode communities to metals and PAHs in freshwater microcosms. Ecotoxicol Environ Saf 148:244–253. Scholar
  32. 32.
    Höss S, Traunspurger W, Severin GF, Jüttner I, Pfister G, Schramm K-W (2004) Influence of 4-nonylphenol on the structure of nematode communities in freshwater microcosms. Environ Toxicol Chem 23:1268–1275. Scholar
  33. 33.
    Bongers T (1990) The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia 83:14–19Google Scholar
  34. 34.
    Höss S, Claus E, Von der Ohe PC, Brinke M, Güde H, Heininger P, Traunspurger W (2011) Nematode species at risk – a metric to assess pollution in soft sediments of freshwaters. Environ Int 37:940–949. Scholar
  35. 35.
    Höss S, Heininger P, Claus E, Möhlenkamp C, Brinke M, Traunspurger W (2017) Validating the NemaSPEAR[%]-index for assessing sediment quality regarding chemical-induced effects on benthic communities in rivers. Ecol Indic 73:52–60. Scholar
  36. 36.
    Haegerbaeumer A, Höss S, Ristau K, Claus E, Möhlenkamp C, Heininger P, Traunspurger W (2016) A comparative approach using ecotoxicological methods from single-species bioassays to model ecosystems. Environ Toxicol Chem 35:2987–2997. Scholar
  37. 37.
    de Deckere E, de Cooman W, Leloup V, Meire P, Schmitt C, von der Ohe PC (2011) Development of sediment quality guidelines for freshwater ecosystems. J Soils Sediment 11:504–517Google Scholar
  38. 38.
    Maupus E (1899) La mue et l’enkystement chez les nématodes. Arch Zool expérimentale générale 7:563–628Google Scholar
  39. 39.
    Leung MCK, Williams PL, Benedetto A, Au C, Helmcke KJ, Aschner M, Meyer JN (2008) Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicol Sci 106:5–28. Scholar
  40. 40.
    Félix M-A, Braendle C (2010) The natural history of Caenorhabditis elegans. Curr Biol 20:R965–R969. Scholar
  41. 41.
    Andrássy I (1984) Klasse Nematoda. Gustav Fischer Verlag, StuttgartGoogle Scholar
  42. 42.
    Hirschmann H (1952) Die Nematoden der Wassergrenze mittelfränkische Gewässer. Zool Jahrb Syst 81:313–436Google Scholar
  43. 43.
    Zullini A (1988) The ecology of the Lambro River. Riv di Idrobiol 27:39–58Google Scholar
  44. 44.
    Höss S, Ahlf W, Bergtold M, Bluebaum-Gronau E, Brinke M, Donnevert G, Menzel R, Möhlenkamp C, Ratte HT, Traunspurger W, von Danwitz B, Pluta HJ (2012) Interlaboratory comparison of a standardized toxicity test using the nematode Caenorhabditis elegans (ISO 10872). Environ Toxicol Chem 31:1525–1535. Scholar
  45. 45.
    Traunspurger W, Haitzer M, Höss S, Beier S, Ahlf W, Steinberg C (1997) Ecotoxicological assessment of aquatic sediments with Caenorhabditis elegans (Nematoda) – a method for testing liquid medium and whole-sediment samples. Environ Toxicol Chem 16:245–250.<0245:EAOASW>2.3.CO;2CrossRefGoogle Scholar
  46. 46.
    Haegerbaeumer A, Höss S, Heininger P, Traunspurger W (2018) Is Caenorhabditis elegans representative of freshwater nematode species in toxicity testing? Environ Sci Pollut Res 25:2879–2888. Scholar
  47. 47.
    Höss S, Jänsch S, Moser T, Junker T, Römbke J (2009) Assessing the toxicity of contaminated soils using the nematode Caenorhabditis elegans as test organism. Ecotoxicol Environ Saf 72:1811–1818. Scholar
  48. 48.
    International Organization for Standardization (2010) Water quality – determination of the toxic effect of seda, Switzerland.
  49. 49.
    International Organization for Standardization (2009) Water quality – sampling. Part 1: guidance on the preservation and handling of sludge and sediment samples. Geneva, SwitzerlandGoogle Scholar
  50. 50.
    International Organization for Standardization (2007) Water quality – sampling. Part 1: determination of selected elements by inductively coupled plams optical emission spectrometry (ICP-OES). Geneva, SwitzerlandGoogle Scholar
  51. 51.
    Pfannkuche O, Thiel H (1988) Sample processing. In: Higgins RP, Thiel H (eds) Introduction to the study of Meiofauna. Smithsonian Institution Press, Washington, pp 134–145Google Scholar
  52. 52.
    Seinhorst JW (1962) On the killing, fixation and transferring to glycerin of nematodes. Nematologica 8:29–32Google Scholar
  53. 53.
    Seinhorst JW (1959) A rapid method for the transfer of nematodes from fixative to anhydrous glycerin. Nematologica 4:67–69Google Scholar
  54. 54.
    Beketov MA, Foit K, Schäfer RB, Schriever CA, Sacchi A, Capri E, Biggs J, Wells C, Liess M (2009) SPEAR indicates pesticide effects in streams – comparative use of species- and family-level biomonitoring data. Environ Pollut 157:1841–1848. Scholar
  55. 55.
    von der Ohe PC, Prüss A, Schäfer RB, Liess M, de Deckere E, Brack W (2007) Water quality indices across Europe – a comparison of the good ecological status of five river basins. J Environ Monit 9:970–978. Scholar
  56. 56.
    Höss S, Ahlf W, Fahnenstich C, Gilberg D, Hollert H, Melbye K, Meller M, Hammers-Wirtz M, Heininger P, Neumann-Hensel H, Ottermanns R, Ratte HT, Seiler TB, Spira D, Weber J, Feiler U (2010) Variability of sediment-contact tests in freshwater sediments with low-level anthropogenic contamination-determination of toxicity thresholds. Environ Pollut 158:2999–3010. Scholar
  57. 57.
    Andrássy I (2009) Free-living nematodes of Hungary, vol 3, 3. Hungarian Natural History Museum, BudapestGoogle Scholar
  58. 58.
    Andrássy I (2007) Free-living nematodes of Hungary, vol 2, 3. Hungarian Natural History Museum, BudapestGoogle Scholar
  59. 59.
    Andrássy I (2005) Free-living nematodes of Hungary, vol 1, 3. Hungarian Natural History Museum, BudapestGoogle Scholar
  60. 60.
    Bongers T (1988) De Nematoden van Nederland. Stichting Uitgeverij Koninklijke Nederlandse Natuurhistorische Vereniging, TrechtGoogle Scholar
  61. 61.
    Vervoort MTW, Vonk JA, Mooijman PJW, Van den Elsen SJJ, Van Megen HHB, Veenhuizen P, Landeweert R, Bakker J, Mulder C, Helder J (2012) SSU ribosomal DNA-based monitoring of nematode assemblages reveals distinct seasonal fluctuations within evolutionary heterogeneous feeding guilds. PLoS One 7:e47555Google Scholar
  62. 62.
    Geiger MF, Astrin JJ, Borsch T, Burkhardt U, Grobe P, Hand R, Hausmann A, Hohberg K, Krogmann L, Lutz M, Monje C, Misof B, Morinière J, Müller KF, Pietsch S, Quandt D, Rulik B, Scholler M, Traunspurger W, Haszprunar G, Wägele W (2016) How to tackle the molecular species inventory for an industrialized nation – lessons from the first phase of the German barcode of life initiative GBOL (2012-2015). Genome 670, gen-2015-0185. doi: Scholar

Copyright information

© Springer Science+Business Media, LLC 2019

Authors and Affiliations

  • Arne Haegerbaeumer
    • 1
    Email author
  • Sebastian Höss
    • 1
  • Walter Traunspurger
    • 1
  1. 1.Department of Animal EcologyBielefeld UniversityBielefeldGermany

Personalised recommendations