Computational Predictions for Multi-Target Drug Design

  • Neelima GuptaEmail author
  • Prateek Pandya
  • Seema Verma
Part of the Methods in Pharmacology and Toxicology book series (MIPT)


Computational techniques have proven to be an essential tool in modern drug discovery research. These tools offer powerful methods for prediction of ligand–receptor interaction events at atomic details, without attempting exhaustive experimental setup. Single ligand–single target strategies for the discovery of new drug molecules have become outdated due to the factors like drug resistance, increased side effects, reduced efficacy, etc., in addition to the involvement of long time period for validation of a new molecule by toxicology and pharmacokinetic studies. Multi-target drug designing approach can offer a paradigm shift for alternative usage of known drugs for complex diseases. These approaches combine knowledge of complex disease networks, chemical and physical characteristics of drugs, and biological receptors. With the availability of advanced computational resources, a number of tools have been developed that help in the identification of new and multiple targets for the already known or new drugs. In the present chapter, an attempt has been made to highlight the current state-of-the-art methodologies used in multi-target identification for therapeutic effects of known drugs or new drug candidates.


Binding interactions Machine learning Molecular docking Molecular dynamics Multi-target drug design (MTDD) Polypharmacology QM–MM approach QSAR Systems approach 


  1. 1.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70. Scholar
  2. 2.
    Oechsner M, Buhmann C, Strauss J, Stuerenburg HJ (2002) COMT-inhibition increases serum levels of dihydroxyphenylacetic acid (DOPAC) in patients with advanced Parkinson’s disease. J Neural Transm 109(1):69–75. Scholar
  3. 3.
    Hartman IVJL, Garvik B, Hartwel L (2001) Principles for the buffering of genetic variation. Science 291:1001–1004. Scholar
  4. 4.
    Bonander N, Bill RM (2009) Relieving the first bottleneck in the drug discovery pipeline: using array technologies to rationalize membrane protein production. Expert Rev Proteomics 6:501–505. Scholar
  5. 5.
    Gillespie SH, Singh K (2011) XDR-TB, what is it; how is it treated; and why is therapeutic failure so high? Recent Pat Antiinfect Drug Discov 6:77–83CrossRefGoogle Scholar
  6. 6.
    Horst JA, Laurenzi A, Bernard B, Samudrala R (2012) Computational multitarget drug discovery. In: Polypharmacology in drug discovery. Wiley, New York, pp 263–301CrossRefGoogle Scholar
  7. 7.
    Sacks LV, Behrman RE (2009) Challenges, successes and hopes in the development of novel TB therapeutics. Future Med Chem 1:749–756. Scholar
  8. 8.
    Keith CT, Borisy AA, Stockwell BR (2005) Innovation: multicomponent therapeutics for networked systems. Nat Rev Drug Discov 4:71–78. Scholar
  9. 9.
    Ekins S, Williams AJ, Krasowski MD, Freundlich JS (2011) In silico repositioning of approved drugs for rare and neglected diseases. Drug Discov Today 16. Scholar
  10. 10.
    Jenwitheesuk E, Horst JA, Rivas KL, Van Voorhis WC, Samudrala R (2008) Novel paradigms for drug discovery: computational multitarget screening. Trends Pharmacol Sci 29:62–71. Scholar
  11. 11.
    Jenwitheesuk E, Samudrala R (2005) Identification of potential multitarget antimalarial drugs. JAMA 294:1487. Scholar
  12. 12.
    Minie M, Chopra G, Sethi G, Horst J, White G, Roy A, Hatti K, Samudrala R (2014) CANDO and the infinite drug discovery frontier. Drug Discov Today 19:1353–1363. Scholar
  13. 13.
    Ren J, Xie L, Li WW, Bourne PE (2010) SMAP-WS: a parallel web service for structural proteome-wide ligand-binding site comparison. Nucleic Acids Res 38:W441–W444. Scholar
  14. 14.
    Swamidass SJ (2011) Mining small-molecule screens to repurpose drugs. Brief Bioinform 12:327–335. Scholar
  15. 15.
    Xu K, Cote TR (2011) Database identifies FDA-approved drugs with potential to be repurposed for treatment of orphan diseases. Brief Bioinform 12:341–345. Scholar
  16. 16.
    Anighoro A, Bajorath J, Rastelli G (2014) Polypharmacology: challenges and opportunities in drug discovery. J Med Chem 57(19):7874–7887. Scholar
  17. 17.
    Hopkins AL, Mason JS, Overington JP (2006) Can we rationally design promiscuous drugs? Curr Opin Struct Biol 16(1):127–136. Scholar
  18. 18.
    Krug M, Hilgeroth A (2008) Recent advances in the development of multi-kinase inhibitors. Mini Rev Med Chem 8(13):1312–1327. Scholar
  19. 19.
    Adrian G, Marcel V, Robert B, Richard T (2007) A comparison of physicochemical property profiles of marketed oral drugs and orally bioavailable anti-cancer protein kinase inhibitors in clinical development. Curr Top Med Chem 7(14):1408–1422. Scholar
  20. 20.
    Nahta R, Yu D, Hung MC, Hortobagyi GN, Esteva FJ (2006) Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat Clin Pract Oncol 3(5):269–280. Scholar
  21. 21.
    Sergina NV, Rausch M, Wang D, Blair J, Hann B, Shokat KM, Moasser MM (2007) Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature. Scholar
  22. 22.
    Tabernero J (2007) The role of VEGF and EGFR inhibition: implications for combining anti-VEGF and anti-EGFR agents. Mol Cancer Res 5:203–220CrossRefGoogle Scholar
  23. 23.
    Cheng F, Liu C, Jiang J, Lu W, Li W, Liu G, Zhou W, Huang J, Tang Y (2012) Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput Biol 8. Scholar
  24. 24.
    O’Meara MJ, Ballouz S, Shoichet BK, Gillis J (2016) Ligand similarity complements sequence, physical interaction, and co-expression for gene function prediction. PLoS One 11(7):e0160098. Scholar
  25. 25.
    Bhattacharjee P, Sarkar S, Pandya P, Bhadra K (2016) Targeting different RNA motifs by beta carboline alkaloid, harmalol: a comparative photophysical, calorimetric, and molecular docking approach. J Biomol Struct Dyn 34(12):2722–2740. Scholar
  26. 26.
    Sarkar S, Pandya P, Bhadra K (2014) Sequence specific binding of beta carboline alkaloid harmalol with deoxyribonucleotides: binding heterogeneity, conformational, thermodynamic and cytotoxic aspects. PLoS One 9(9):e108022. Scholar
  27. 27.
    Pandya P, Agarwal LK, Gupta N, Pal S (2014) Molecular recognition pattern of cytotoxic alkaloid vinblastine with multiple targets. J Mol Graph Model 54:1–9. Scholar
  28. 28.
    Masum AA, Chakraborty M, Pandya P, Halder UC, Islam MM, Mukhopadhyay S (2014) Thermodynamic study of rhodamine 123-calf thymus DNA interaction: determination of calorimetric enthalpy by optical melting study. J Phys Chem B 118(46):13151–13161. Scholar
  29. 29.
    Islam MM, Chakraborty M, Pandya P, Al Masum A, Gupta N, Mukhopadhyay S (2013) Binding of DNA with Rhodamine B: spectroscopic and molecular modeling studies. Dyes Pigments 99(2):412–422. Scholar
  30. 30.
    Pandya P, Gupta SP, Pandav K, Barthwal R, Jayaram B, Kumar S (2012) DNA binding studies of Vinca alkaloids: experimental and computational evidence. Nat Prod Commun 7(3):305–309PubMedGoogle Scholar
  31. 31.
    Pandya P, Islam MM, Kumar GS, Jayaram B, Kumar S (2010) DNA minor groove binding of small molecules: experimental and computational evidence. J Chem Sci 122(2):247–257CrossRefGoogle Scholar
  32. 32.
    Islam MM, Pandya P, Kumar S, Kumar GS (2009) RNA targeting through binding of small molecules: studies on t-RNA binding by the cytotoxic protoberberine alkaloid coralyne. Mol Biosyst 5(3):244–254. Scholar
  33. 33.
    Islam MM, Pandya P, Chowdhury SR, Kumar S, Kumar GS (2008) Binding of DNA-binding alkaloids berberine and palmatine to tRNA and comparison to ethidium: spectroscopic and molecular modeling studies. J Mol Struct 891(1–3):498–507. Scholar
  34. 34.
    Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461. Scholar
  35. 35.
    Chang MW, Ayeni C, Breuer S, Torbett BE (2010) Virtual screening for HIV protease inhibitors: a comparison of AutoDock 4 and Vina. PLoS One 5(8):e11955. Scholar
  36. 36.
    Shaikh SA, Jayaram B (2007) A swift all-atom energy-based computational protocol to predict DNA-ligand binding affinity and Delta Tm. J Med Chem 50(9):2240–2244. Scholar
  37. 37.
    Gupta A, Sharma P, Jayaram B (2007) ParDOCK: an all atom energy based Monte Carlo docking protocol for protein-ligand complexes. Protein Pept Lett 14(7):632–646. Scholar
  38. 38.
    Lin J-H, Perryman AL, Schames JR, McCammon JA (2002) Computational drug design accommodating receptor flexibility: the relaxed complex scheme. J Am Chem Soc 124(20):5632–5633. Scholar
  39. 39.
    Amaro RE, Baron R, McCammon JA (2008) An improved relaxed complex scheme for receptor flexibility in computer-aided drug design. J Comput Aided Mol Des 22(9):693–705. Scholar
  40. 40.
    Yuriev E, Agostino M, Ramsland PA (2011) Challenges and advances in computational docking: 2009 in review. J Mol Recognit 24(2):149–164. Scholar
  41. 41.
    Ellingson SR, Smith JC, Baudry J (2013) VinaMPI: facilitating multiple receptor high-throughput virtual docking on high-performance computers. J Comput Chem 34(25):2212–2221. Scholar
  42. 42.
    Pan JB, Ji N, Pan W, Hong R, Wang H, Ji ZL (2014) High-throughput identification of off-targets for the mechanistic study of severe adverse drug reactions induced by analgesics. Toxicol Appl Pharmacol 274(1):24–34. Scholar
  43. 43.
    Amaro RE, Schnaufer A, Interthal H, Hol W, Stuart KD, McCammon JA (2008) Discovery of drug-like inhibitors of an essential RNA-editing ligase in Trypanosoma brucei. Proc Natl Acad Sci U S A 105(45):17278–17283. Scholar
  44. 44.
    Hui-Fang L, Qing S, Jian Z, Wei F (2010) Evaluation of various inverse docking schemes in multiple targets identification. J Mol Graph Model 29(3):326–330. Scholar
  45. 45.
    Chopra G, Samudrala R (2016) Exploring polypharmacology in drug discovery and repurposing using the CANDO platform. Curr Pharm Des 22:3109–3123. Scholar
  46. 46.
    Lodola A, De Vivo M (2012) The increasing role of QM/MM in drug discovery. Adv Protein Chem Struct Biol 87:337–362. Scholar
  47. 47.
    Gleeson MP, Gleeson D (2009) QM/MM calculations in drug discovery: a useful method for studying binding phenomena? J Chem Inf Model 49(3):670–677. Scholar
  48. 48.
    Schrödinger L (2017) Schrödinger Suite 2017–4 QM-Polarized Ligand Docking protocol; Glide, Schrödinger, LLC, New York, NY, 2017; Jaguar, Schrödinger, LLC, New York, NY, 2017; QSite, Schrödinger, LLC, New York, NY, 2017Google Scholar
  49. 49.
    Speck-Planche A, Cordeiro MN (2015) Multitasking models for quantitative structure-biological effect relationships: current status and future perspectives to speed up drug discovery. Expert Opin Drug Discov 10(3):245–256. Scholar
  50. 50.
    Liu X, Zhu F, Ma X, Shi Z, Yang S, Wei Y, Chen Y (2013) Predicting targeted polypharmacology for drug repositioning and multi-target drug discovery. Curr Med Chem 20(13):1646–1661CrossRefGoogle Scholar
  51. 51.
    Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin II, Cronin M, Dearden J, Gramatica P, Martin YC, Todeschini R, Consonni V, Kuz’min VE, Cramer R, Benigni R, Yang C, Rathman J, Terfloth L, Gasteiger J, Richard A, Tropsha A (2014) QSAR modeling: where have you been? Where are you going to? J Med Chem 57(12):4977–5010. Scholar
  52. 52.
    Roy K, Kar S, Das RN (2015) Selected statistical methods in QSAR. In: Understanding the basics of QSAR for applications in pharmaceutical sciences and risk assessment. Academic Press, Amsterdam, pp 191–229. Scholar
  53. 53.
    Nantasenamat C, Worachartcheewan A, Jamsak S, Preeyanon L, Shoombuatong W, Simeon S, Mandi P, Isarankura-Na-Ayudhya C, Prachayasittikul V (2015) AutoWeka: toward an automated data mining software for QSAR and QSPR studies. Methods Mol Biol 1260:119–147. Scholar
  54. 54.
    Yang Y, Lin T, Weng XL, Darr JA, Wang XZ (2011) Data flow modeling, data mining and QSAR in high-throughput discovery of functional nanomaterials. Comput Chem Eng 35(4):671–678. Scholar
  55. 55.
    Vina D, Uriarte E, Orallo F, Gonzalez-Diaz H (2009) Alignment-free prediction of a drug-target complex network based on parameters of drug connectivity and protein sequence of receptors. Mol Pharm 6(3):825–835. Scholar
  56. 56.
    Geronikaki A, Druzhilovsky D, Zakharov A, Poroikov V (2008) Computer-aided prediction for medicinal chemistry via the Internet. SAR QSAR Environ Res 19(1–2):27–38. Scholar
  57. 57.
    Marzaro G, Chilin A, Guiotto A, Uriarte E, Brun P, Castagliuolo I, Tonus F, Gonzalez-Diaz H (2011) Using the TOPS-MODE approach to fit multi-target QSAR models for tyrosine kinases inhibitors. Eur J Med Chem 46(6):2185–2192. Scholar
  58. 58.
    Rosenbaum L, Dorr A, Bauer MR, Boeckler FM, Zell A (2013) Inferring multi-target QSAR models with taxonomy-based multi-task learning. J Cheminform 5(1):33. Scholar
  59. 59.
    Prado-Prado FJ, Gonzalez-Diaz H, de la Vega OM, Ubeira FM, Chou KC (2008) Unified QSAR approach to antimicrobials. Part 3: First multi-tasking QSAR model for input-coded prediction, structural back-projection, and complex networks clustering of antiprotozoal compounds. Bioorg Med Chem 16(11):5871–5880. Scholar
  60. 60.
    Prado-Prado FJ, Martinez de la Vega O, Uriarte E, Ubeira FM, Chou KC, Gonzalez-Diaz H (2009) Unified QSAR approach to antimicrobials. 4. Multi-target QSAR modeling and comparative multi-distance study of the giant components of antiviral drug-drug complex networks. Bioorg Med Chem 17(2):569–575. Scholar
  61. 61.
    Cruz-Monteagudo M, Borges F, Cordeiro MN, CagideFajin JL, Morell C, Ruiz RM, Canizares-Carmenate Y, Dominguez ER (2008) Desirability-based methods of multiobjective optimization and ranking for global QSAR studies. Filtering safe and potent drug candidates from combinatorial libraries. J Comb Chem 10(6):897–913. Scholar
  62. 62.
    Prado-Prado FJ, Garcia-Mera X, Gonzalez-Diaz H (2010) Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species. Bioorg Med Chem 18(6):2225–2231. Scholar
  63. 63.
    Speck-Planche A, Cordeiro M (2017) Advanced in silico approaches for drug discovery: mining information from multiple biological and chemical data through mtk-QSBER and pt-QSPR strategies. Curr Med Chem 24(16):1687–1704. Scholar
  64. 64.
    Gonzalez-Diaz H, Aguero G, Cabrera MA, Molina R, Santana L, Uriarte E, Delogu G, Castanedo N (2005) Unified Markov thermodynamics based on stochastic forms to classify drugs considering molecular structure, partition system, and biological species: distribution of the antimicrobial G1 on rat tissues. Bioorg Med Chem Lett 15(3):551–557. Scholar
  65. 65.
    Lagunin A, Zakharov A, Filimonov D, Poroikov V (2011) QSAR modelling of rat acute toxicity on the basis of PASS prediction. Mol Inform 30(2–3):241–250. Scholar
  66. 66.
    Allen MP (2004) Introduction of molecular dynamics simulation. In: Attig N, Binder K, Grubmuller H, Kremer K (eds) Computational soft matter: from synthetic polymers to proteins, Lecture notes, NIC series, vol 23. John von Neumann Institute for Computing, Julich, pp 1–28Google Scholar
  67. 67.
    Sagui C, Darden TA (1999) Molecular dynamics simulations of biomolecules: long-range electrostatic effects. Annu Rev Biophys Biomol Struct 28:155–179. Scholar
  68. 68.
    Verlet L (1967) Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev 159(1):98CrossRefGoogle Scholar
  69. 69.
    Atkins P, Paula J (2006) Physical chemistry for the life sciences. W H Freeman & Co, New YorkGoogle Scholar
  70. 70.
    Zhao H, Caflisch A (2015) Molecular dynamics in drug design. Eur J Med Chem 91:4–14. Scholar
  71. 71.
    Hospital A, Goñi JR, Orozco M, Gelpí JL (2015) Molecular dynamics simulations: advances and applications. Adv Appl Bioinform Chem 8:37–47. Scholar
  72. 72.
    Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802. Scholar
  73. 73.
    Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91(1–3):43–56. Scholar
  74. 74.
    Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4(2):187–217. Scholar
  75. 75.
    Case DA, Cerutti DS, Cheatham TE III, Darden TA, Duke RE, Giese TJ, Gohlke H, Goetz AW, Greene D, Homeyer N, Izadi S, Kovalenko A, Lee TS, LeGrand S, Li P, Lin C, Liu J, Luchko T, Luo R, Mermelstein D, Merz KM, Monard G, Nguyen H, Omelyan I, Onufriev A, Pan F, Qi R, Roe DR, Roitberg A, Sagui C, Simmerling CL, Botello-Smith WM, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Xiao L, York DM, Kollman PA (2017) AMBER 2017, 17th edn. University of California, San FranciscoGoogle Scholar
  76. 76.
    Scott WRP, Hünenberger PH, Tironi IG, Mark AE, Billeter SR, Fennen J, Torda AE, Huber T, Krüger P, van Gunsteren WF (1999) The GROMOS biomolecular simulation program package. J Phys Chem A 103(19):3596–3607. Scholar
  77. 77.
    Lagardère L, Jolly L-H, Lipparini F, Aviat F, Stamm B, Jing ZF, Harger M, Torabifard H, Cisneros GA, Schnieders MJ, Gresh N, Maday Y, Ren PY, Ponder JW, Piquemal J-P (2018) Tinker-HP: a massively parallel molecular dynamics package for multiscale simulations of large complex systems with advanced point dipole polarizable force fields. Chem Sci 9(4):956–972. Scholar
  78. 78.
    Harger M, Li D, Wang Z, Dalby K, Lagardere L, Piquemal JP, Ponder J, Ren P (2017) Tinker-OpenMM: absolute and relative alchemical free energies using AMOEBA on GPUs. J Comput Chem 38(23):2047–2055. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre of Advanced Study, Department of ChemistryUniversity of RajasthanJaipurIndia
  2. 2.Amity Institute of Forensic SciencesAmity UniversityNoidaIndia

Personalised recommendations