Advertisement

Virtual Screening for Dual Hsp90/B-Raf Inhibitors

  • Andrew Anighoro
  • Luca Pinzi
  • Giulio Rastelli
  • Jürgen BajorathEmail author
Protocol
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

In this chapter, we describe a computational strategy leading to the identification of the first dual inhibitors of Heat Shock Protein 90 (Hsp90) and protein kinase B-Raf. Both proteins are validated targets for anti-cancer drug discovery. There is strong evidence that the simultaneous inhibition of Hsp90 and B-Raf provides therapeutic benefits compared to exclusive engagement of one or the other target. Hence, we have been interested in searching for dual Hsp90/B-Raf inhibitors. Virtual compound screening led to the identification of two compounds with micromolar activity against both targets. The computational approach faced a number of challenges that needed to be overcome, as described herein.

Keywords

B-Raf Hsp90 Molecular docking Multi-target inhibitors Pharmacophores Polypharmacology Virtual screening 

Notes

Acknowledgement

We thank OpenEye Scientific Software, Inc., for a free academic license of the OpenEye Toolkit and Chemical Computing Group, Inc., for academic teaching licences of the Molecular Operating Environment.

References

  1. 1.
    Peters J-U (2013) Polypharmacology—foe or friend? J Med Chem 56:8955–8971CrossRefGoogle Scholar
  2. 2.
    Anighoro A, Bajorath J, Rastelli G (2014) Polypharmacology: challenges and opportunities in drug discovery. J Med Chem 57:7874–7887CrossRefGoogle Scholar
  3. 3.
    Terstappen GC, Schlüpen C, Raggiaschi R, Gaviraghi G (2007) Target deconvolution strategies in drug discovery. Nat Rev Drug Discov 6:891–903CrossRefGoogle Scholar
  4. 4.
    Schenone M, Dančík V, Wagner BK, Clemons PA (2013) Target identification and mechanism of action in chemical biology and drug discovery. Nat Chem Biol 9:232–240CrossRefGoogle Scholar
  5. 5.
    Morphy R, Rankovic Z (2005) Designed multiple ligands. An emerging drug discovery paradigm. J Med Chem 48:6523–6543CrossRefGoogle Scholar
  6. 6.
    Rastelli G, Pinzi L (2015) Computational polypharmacology comes of age. Front Pharmacol 6:157CrossRefGoogle Scholar
  7. 7.
    Anighoro A, Pinzi L, Marverti G, Bajorath J, Rastelli G (2017) Heat shock protein 90 and serine/threonine kinase B-Raf inhibitors have overlapping chemical space. RSC Adv 7:31069–31074CrossRefGoogle Scholar
  8. 8.
    Li J, Buchner J (2013) Structure, function and regulation of the Hsp90 machinery. Biomed J 36:106–117CrossRefGoogle Scholar
  9. 9.
    Echeverría PC, Bernthaler A, Dupuis P, Mayer B, Picard D (2011) An interaction network predicted from public data as a discovery tool: application to the Hsp90 molecular chaperone machine. PLoS One 6:e26044CrossRefGoogle Scholar
  10. 10.
    Neckers L, Workman P (2012) Hsp90 molecular chaperone inhibitors: are we there yet? Clin Cancer Res 18:64–76CrossRefGoogle Scholar
  11. 11.
    Bhat R, Tummalapalli SR, Rotella DP (2014) Progress in the discovery and development of heat shock protein 90 (Hsp90) inhibitors. J Med Chem 57:8718–8728CrossRefGoogle Scholar
  12. 12.
    Zhang W, Liu HT (2002) MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 12:9–18CrossRefGoogle Scholar
  13. 13.
    Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JWC, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954CrossRefGoogle Scholar
  14. 14.
    Whittaker S, Kirk R, Hayward R, Zambon A, Viros A, Cantarino N, Affolter A, Nourry A, Niculescu-Duvaz D, Springer C, Marais R (2010) Gatekeeper mutations mediate resistance to BRAF-targeted therapies. Sci Transl Med 2:35ra41CrossRefGoogle Scholar
  15. 15.
    Haarberg HE, Smalley KSM (2014) Resistance to Raf inhibition in cancer. Drug Discov Today Technol 11:27–32CrossRefGoogle Scholar
  16. 16.
    Grbovic OM, Basso AD, Sawai A, Ye Q, Friedlander P, Solit D, Rosen N (2006) V600E B-Raf requires the Hsp90 chaperone for stability and is degraded in response to Hsp90 inhibitors. Proc Natl Acad Sci U S A 103:57–62CrossRefGoogle Scholar
  17. 17.
    Anighoro A, Stumpfe D, Heikamp K, Beebe K, Neckers LM, Bajorath J, Rastelli G (2015) Computational polypharmacology analysis of the heat shock protein 90 interactome. J Chem Inf Model 55:676–686CrossRefGoogle Scholar
  18. 18.
    Furtmann N, Hu Y, Bajorath J (2015) Comprehensive analysis of three-dimensional activity cliffs formed by kinase inhibitors with different binding modes and cliff mapping of structural analogues. J Med Chem 58:252–264CrossRefGoogle Scholar
  19. 19.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242CrossRefGoogle Scholar
  20. 20.
    Smith AL, DeMorin FF, Paras NA, Huang Q, Petkus JK, Doherty EM, Nixey T, Kim JL, Whittington DA, Epstein LF, Lee MR, Rose MJ, Babij C, Fernando M, Hess K, Le Q, Beltran P, Carnahan J (2009) Selective inhibitors of the mutant B-Raf pathway: discovery of a potent and orally bioavailable aminoisoquinoline. J Med Chem 52:6189–6192CrossRefGoogle Scholar
  21. 21.
    Kung P-P, Sinnema P-J, Richardson P, Hickey MJ, Gajiwala KS, Wang F, Huang B, McClellan G, Wang J, Maegley K, Bergqvist S, Mehta PP, Kania R (2011) Design strategies to target crystallographic waters applied to the Hsp90 molecular chaperone. Bioorg Med Chem Lett 21:3557–3562CrossRefGoogle Scholar
  22. 22.
    O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) OpenBabel: an open chemical toolbox. J Cheminform 3:33CrossRefGoogle Scholar
  23. 23.
    Molecular Operating Environment (MOE) (2014) Chemical Computing Group Inc., 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7Google Scholar
  24. 24.
    Fiser A, Sali A (2003) ModLoop: automated modeling of loops in protein structures. Bioinformatics 19:2500–2501CrossRefGoogle Scholar
  25. 25.
    Baell J, Walters MA (2014) Chemistry: chemical con artists foil drug discovery. Nature 513:481–483CrossRefGoogle Scholar
  26. 26.
    ZINC PAINS Patterns Search. http://zinc15.docking.org/patterns/home/. Accessed 17 June 2016
  27. 27.
    Irwin JJ, Duan D, Torosyan H, Doak AK, Ziebart KT, Sterling T, Tumanian G, Shoichet BK (2015) An aggregation advisor for ligand discovery. J Med Chem 58:7076–7087CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Andrew Anighoro
    • 1
  • Luca Pinzi
    • 2
  • Giulio Rastelli
    • 2
  • Jürgen Bajorath
    • 1
    Email author
  1. 1.Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal ChemistryRheinische Friedrich-Wilhelms-UniversitätBonnGermany
  2. 2.Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly

Personalised recommendations