Advertisement

Long-Term Cell Fate Tracking of Individual Renal Cells Using Serial Intravital Microscopy

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2150)

Abstract

Intravital multiphoton microscopy of the kidney is a powerful technique to study alterations in tissue morphology and function simultaneously in the living animal and represents a dynamic and developing research tool in the field. Recent technological advances include serial intravital multiphoton microscopy of the same kidney regions over several weeks and combined with ex vivo histology for cellular biomarker expression of the same cells, which had been subject to serial imaging before. Thus, serial intravital multiphoton microscopy followed by ex vivo histology provides unique tools to perform long-term cell fate tracing of the same renal cells during physiological and pathophysiological conditions, thereby allowing the detection of structural changes of the same renal cells over time. Examples include renal cell migration and proliferation while linking these events to local functional alterations and eventually to the expression of distinct cellular biomarkers. Here, we provide a detailed step-by-step protocol to facilitate serial intravital multiphoton microscopy for long-term in vivo tracking of renal cells and subsequent ex vivo histology for immunohistological staining of the same cells in the fixed tissue.

Keywords

Intravital imaging Multiphoton microscopy Cell fate tracking Fluorescent reporter Tissue remodeling Immunohistology 

Notes

Acknowledgments

This work was supported in part by US National Institutes of Health grants DK064324, DK100944, and S10OD021833 and by Lupus Research Alliance grant 519100 to J.P-P. IMS was funded by a postdoctoral research fellowship of the German Research Foundation.

References

  1. 1.
    Peti-Peterdi J, Burford JL, Hackl MJ (2012) The first decade of using multiphoton microscopy for high-power kidney imaging. Am J Physiol Renal Physiol 302(2):F227–F233.  https://doi.org/10.1152/ajprenal.00561.2011CrossRefPubMedGoogle Scholar
  2. 2.
    Schiessl IM, Castrop H (2016) Deep insights: intravital imaging with two-photon microscopy. Pflugers Arch 468(9):1505–1516.  https://doi.org/10.1007/s00424-016-1832-7CrossRefPubMedGoogle Scholar
  3. 3.
    Diaspro A, Bianchini P, Vicidomini G, Faretta M, Ramoino P, Usai C (2006) Multi-photon excitation microscopy. Biomed Eng Online 5:36.  https://doi.org/10.1186/1475-925X-5-36CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kaissling B, Lehir M, Kriz W (2013) Renal epithelial injury and fibrosis. Biochim Biophys Acta 1832(7):931–939.  https://doi.org/10.1016/j.bbadis.2013.02.010CrossRefPubMedGoogle Scholar
  5. 5.
    Hackl MJ, Burford JL, Villanueva K, Lam L, Susztak K, Schermer B, Benzing T, Peti-Peterdi J (2013) Tracking the fate of glomerular epithelial cells in vivo using serial multiphoton imaging in new mouse models with fluorescent lineage tags. Nat Med 19(12):1661–1666.  https://doi.org/10.1038/nm.3405CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Schiessl IM, Grill A, Fremter K, Steppan D, Hellmuth MK, Castrop H (2018) Renal interstitial platelet-derived growth factor receptor-beta cells support proximal tubular regeneration. J Am Soc Nephrol 29(5):1383–1396.  https://doi.org/10.1681/ASN.2017101069CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kaverina NV, Kadoya H, Eng DG, Rusiniak ME, Sequeira-Lopez ML, Gomez RA, Pippin JW, Gross KW, Peti-Peterdi J, Shankland SJ (2017) Tracking the stochastic fate of cells of the renin lineage after podocyte depletion using multicolor reporters and intravital imaging. PLoS One 12(3):e0173891.  https://doi.org/10.1371/journal.pone.0173891CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ritsma L, Steller EJ, Ellenbroek SI, Kranenburg O, Borel Rinkes IH, van Rheenen J (2013) Surgical implantation of an abdominal imaging window for intravital microscopy. Nat Protoc 8(3):583–594.  https://doi.org/10.1038/nprot.2013.026CrossRefPubMedGoogle Scholar
  9. 9.
    Schiessl IM, Hammer A, Kattler V, Gess B, Theilig F, Witzgall R, Castrop H (2016) Intravital imaging reveals angiotensin ii-induced transcytosis of albumin by podocytes. J Am Soc Nephrol 27(3):731–744.  https://doi.org/10.1681/ASN.2014111125CrossRefPubMedGoogle Scholar
  10. 10.
    Schiessl IM, Kattler V, Castrop H (2015) In vivo visualization of the antialbuminuric effects of the angiotensin-converting enzyme inhibitor enalapril. J Pharmacol Exp Ther 353(2):299–306.  https://doi.org/10.1124/jpet.114.222125CrossRefPubMedGoogle Scholar
  11. 11.
    Schiessl IM, Bardehle S, Castrop H (2013) Superficial nephrons in BALB/c and C57BL/6 mice facilitate in vivo multiphoton microscopy of the kidney. PLoS One 8(1):e52499.  https://doi.org/10.1371/journal.pone.0052499CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Burford JL, Villanueva K, Lam L, Riquier-Brison A, Hackl MJ, Pippin J, Shankland SJ, Peti-Peterdi J (2014) Intravital imaging of podocyte calcium in glomerular injury and disease. J Clin Invest 124(5):2050–2058.  https://doi.org/10.1172/JCI71702CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Butler MJ, Ramnath R, Kadoya H, Desposito D, Riquier-Brison A, Ferguson JK, Onions KL, Ogier AS, ElHegni H, Coward RJ, Welsh GI, Foster RR, Peti-Peterdi J, Satchell SC (2019) Aldosterone induces albuminuria via matrix metalloproteinase-dependent damage of the endothelial glycocalyx. Kidney Int 95(1):94–107.  https://doi.org/10.1016/j.kint.2018.08.024CrossRefPubMedGoogle Scholar
  14. 14.
    Peti-Peterdi J, Toma I, Sipos A, Vargas SL (2009) Multiphoton imaging of renal regulatory mechanisms. Physiology 24:88–96.  https://doi.org/10.1152/physiol.00001.2009CrossRefPubMedGoogle Scholar
  15. 15.
    Schiessl IM, Hammer A, Riquier-Brison A, Peti-Peterdi J (2016) Just look! Intravital microscopy as the best means to study kidney cell death dynamics. Semin Nephrol 36(3):220–236.  https://doi.org/10.1016/j.semnephrol.2016.03.009CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hall AM, Rhodes GJ, Sandoval RM, Corridon PR, Molitoris BA (2013) In vivo multiphoton imaging of mitochondrial structure and function during acute kidney injury. Kidney Int 83(1):72–83.  https://doi.org/10.1038/ki.2012.328CrossRefPubMedGoogle Scholar
  17. 17.
    Gyarmati G, Kadoya H, Moon JY, Burford JL, Ahmadi N, Gill IS, Hong YK, Der B, Peti-Peterdi J (2018) Advances in renal cell imaging. Semin Nephrol 38(1):52–62.  https://doi.org/10.1016/j.semnephrol.2017.09.004CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Weigert R, Porat-Shliom N, Amornphimoltham P (2013) Imaging cell biology in live animals: ready for prime time. J Cell Biol 201(7):969–979.  https://doi.org/10.1083/jcb.201212130CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Skala M, Ramanujam N (2010) Multiphoton redox ratio imaging for metabolic monitoring in vivo. Methods Mol Biol 594:155–162.  https://doi.org/10.1007/978-1-60761-411-1_11CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sipos A, Toma I, Kang JJ, Rosivall L, Peti-Peterdi J (2007) Advances in renal (patho)physiology using multiphoton microscopy. Kidney Int 72(10):1188–1191.  https://doi.org/10.1038/sj.ki.5002461CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kang JJ, Toma I, Sipos A, McCulloch F, Peti-Peterdi J (2006) Imaging the renin-angiotensin system: an important target of anti-hypertensive therapy. Adv Drug Deliv Rev 58(7):824–833.  https://doi.org/10.1016/j.addr.2006.07.006CrossRefPubMedGoogle Scholar
  22. 22.
    Kang JJ, Toma I, Sipos A, McCulloch F, Peti-Peterdi J (2006) Quantitative imaging of basic functions in renal (patho)physiology. Am J Physiol Renal Physiol 291(2):F495–F502.  https://doi.org/10.1152/ajprenal.00521.2005CrossRefPubMedGoogle Scholar
  23. 23.
    Schiessl IM, Castrop H (2013) Angiotensin II AT2 receptor activation attenuates AT1 receptor-induced increases in the glomerular filtration of albumin: a multiphoton microscopy study. Am J Physiol Renal Physiol 305(8):F1189–F1200.  https://doi.org/10.1152/ajprenal.00377.2013CrossRefPubMedGoogle Scholar
  24. 24.
    Snippert HJ, van der Flier LG, Sato T, van Es JH, van den Born M, Kroon-Veenboer C, Barker N, Klein AM, van Rheenen J, Simons BD, Clevers H (2010) Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143(1):134–144.  https://doi.org/10.1016/j.cell.2010.09.016CrossRefPubMedGoogle Scholar
  25. 25.
    Degn SE, van der Poel CE, Firl DJ, Ayoglu B, Al Qureshah FA, Bajic G, Mesin L, Reynaud CA, Weill JC, Utz PJ, Victora GD, Carroll MC (2017) Clonal evolution of autoreactive germinal centers. Cell 170(5):913–926.e919.  https://doi.org/10.1016/j.cell.2017.07.026CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    von Massenhausen A, Tonnus W, Himmerkus N, Parmentier S, Saleh D, Rodriguez D, Ousingsawat J, Ang RL, Weinberg JM, Sanz AB, Ortiz A, Zierleyn A, Becker JU, Baratte B, Desban N, Bach S, Schiessl IM, Nogusa S, Balachandran S, Anders HJ, Ting AT, Bleich M, Degterev A, Kunzelmann K, Bornstein SR, Green DR, Hugo C, Linkermann A (2018) Phenytoin inhibits necroptosis. Cell Death Dis 9(3):359.  https://doi.org/10.1038/s41419-018-0394-3CrossRefGoogle Scholar
  27. 27.
    Dunn KW, Sutton TA, Sandoval RM (2012) Live-animal imaging of renal function by multiphoton microscopy. Curr Protoc Cytom Chapter 12:Unit12.19.  https://doi.org/10.1002/0471142956.cy1209s62CrossRefGoogle Scholar
  28. 28.
    Gee JM, Smith NA, Fernandez FR, Economo MN, Brunert D, Rothermel M, Morris SC, Talbot A, Palumbos S, Ichida JM, Shepherd JD, West PJ, Wachowiak M, Capecchi MR, Wilcox KS, White JA, Tvrdik P (2014) Imaging activity in neurons and glia with a Polr2a-based and cre-dependent GCaMP5G-IRES-tdTomato reporter mouse. Neuron 83(5):1058–1072.  https://doi.org/10.1016/j.neuron.2014.07.024CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Salmon AH, Ferguson JK, Burford JL, Gevorgyan H, Nakano D, Harper SJ, Bates DO, Peti-Peterdi J (2012) Loss of the endothelial glycocalyx links albuminuria and vascular dysfunction. J Am Soc Nephrol 23(8):1339–1350.  https://doi.org/10.1681/ASN.2012010017CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Nakano D, Kobori H, Burford JL, Gevorgyan H, Seidel S, Hitomi H, Nishiyama A, Peti-Peterdi J (2012) Multiphoton imaging of the glomerular permeability of angiotensinogen. J Am Soc Nephrol 23(11):1847–1856.  https://doi.org/10.1681/asn.2012010078CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Greka A, Mundel P (2012) Calcium regulates podocyte actin dynamics. Semin Nephrol 32(4):319–326.  https://doi.org/10.1016/j.semnephrol.2012.06.003CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Rigothier C, Auguste P, Welsh GI, Lepreux S, Deminiere C, Mathieson PW, Saleem MA, Ripoche J, Combe C (2012) IQGAP1 interacts with components of the slit diaphragm complex in podocytes and is involved in podocyte migration and permeability in vitro. PLoS One 7(5):e37695.  https://doi.org/10.1371/journal.pone.0037695CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Atkinson BT, Jasuja R, Chen VM, Nandivada P, Furie B, Furie BC (2010) Laser-induced endothelial cell activation supports fibrin formation. Blood 116(22):4675–4683.  https://doi.org/10.1182/blood-2010-05-283986CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Sequeira Lopez ML, Pentz ES, Nomasa T, Smithies O, Gomez RA (2004) Renin cells are precursors for multiple cell types that switch to the renin phenotype when homeostasis is threatened. Dev Cell 6(5):719–728CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2019

Authors and Affiliations

  1. 1.Department of Physiology and NeuroscienceZilkha Neurogenetic Institute, Keck School of Medicine, University of Southern CaliforniaLos AngelesUSA
  2. 2.Institute of Physiology, University of RegensburgRegensburgGermany
  3. 3.Department of OphthalmologyUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations