Advertisement

Quantifying Senescence-Associated Phenotypes in Primary Multipotent Mesenchymal Stromal Cell Cultures

  • Stéphanie Nadeau
  • Anastasia Cheng
  • Inés Colmegna
  • Francis Rodier
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2045)

Abstract

Cellular senescence is a tumor suppressor mechanism that removes potentially neoplastic cells from the proliferative pool. Senescent cells naturally accumulate with advancing age; however, excessive/aberrant accumulation of senescent cells can disrupt normal tissue function. Multipotent mesenchymal stromal cells (MSCs), which are actively evaluated as cell-based therapy, can undergo replicative senescence or stress-induced premature senescence. The molecular characterization of MSCs senescence can be useful not only for understanding the clinical correlations between MSCs biology and human age or age-related diseases but also for identifying competent MSCs for therapeutic applications. Because MSCs are involved in regulating the hematopoietic stem cell niche, and MSCs dysfunction has been implicated in age-related diseases, the identification and selective removal of senescent MSC may represent a potential therapeutic target. Cellular senescence is generally defined by senescence-associated (SA) permanent proliferation arrest (SAPA) accompanied by persistent DNA damage response (DDR) signaling emanating from persistent DNA lesions including damaged telomeres. Alongside SA cell cycle arrest and DDR signaling, a plethora of phenotypic hallmarks help define the overall senescent phenotype including a potent SA secretory phenotype (SASP) with many microenvironmental functions. Due to the complexity of the senescence phenotype, no single hallmark is alone capable of identifying senescent MSCs. This protocol highlights strategies to validate MSCs senescence through the measurements of several key SA hallmarks including lysosomal SA Beta-galactosidase activity (SA-βgal), cell cycle arrest, persistent DDR signaling, and the inflammatory SASP.

Keywords

Senescence Stem cells Immunofluorescence Senescence-associated beta-galactosidase Sandwich enzyme-linked immunosorbent assay Senescence-associated secretory phenotype DNA damage foci Mesenchymal stromal stem cell Multipotent mesenchymal stromal cell 

Notes

Acknowledgments

We thank Dr. Rodier and Dr. Colmegna’s laboratory members for their valuable comments and discussions. This effort was supported by the Institut du cancer de Montréal (ICM to FR), the Israel Cancer Research Foundation (ICRF to FR), and the Canadian Institute for Health Research (CIHR MOP114962 to FR and MOP287233 to IC/FR). FR is a researcher at CRCHUM/ICM, which receives support from the Fonds de recherche du Québec – Santé (FRQS). FR is supported by a FRQS junior I–II career awards (22624, 33070). IC is a Chercheur Boursier Senior from FRQS. SN is supported by a FRQS PhD scholarship and a Canderel-ICM excellence award.

References

  1. 1.
    Jackson L, Jones DR, Scotting P, Sottile V (2007) Adult mesenchymal stem cells: differentiation potential and therapeutic applications. J Postgrad Med 53(2):121–127CrossRefGoogle Scholar
  2. 2.
    Tirino V, Paino F, d’Aquino R, Desiderio V, De Rosa A, Papaccio G (2011) Methods for the identification, characterization and banking of human DPSCs: current strategies and perspectives. Stem Cell Rev 7(3):608–615.  https://doi.org/10.1007/s12015-011-9235-9CrossRefGoogle Scholar
  3. 3.
    Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 100(10):5807–5812.  https://doi.org/10.1073/pnas.0937635100CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Aqmasheh S, Shamsasanjan K, Akbarzadehlaleh P, Pashoutan Sarvar D, Timari H (2017) Effects of mesenchymal stem cell derivatives on hematopoiesis and hematopoietic stem cells. Adv Pharm Bull 7(2):165–177.  https://doi.org/10.15171/apb.2017.021CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    O’Hagan-Wong K, Nadeau S, Carrier-Leclerc A, Apablaza F, Hamdy R, Shum-Tim D, Rodier F, Colmegna I (2016) Increased IL-6 secretion by aged human mesenchymal stromal cells disrupts hematopoietic stem and progenitor cells’ homeostasis. Oncotarget 7(12):13285–13296.  https://doi.org/10.18632/oncotarget.7690CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Galipeau J, Sensebe L (2018) Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell 22(6):824–833.  https://doi.org/10.1016/j.stem.2018.05.004CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bobis S, Jarocha D, Majka M (2006) Mesenchymal stem cells: characteristics and clinical applications. Folia Histochem Cytobiol 44(4):215–230PubMedGoogle Scholar
  8. 8.
    Jacobs SA, Roobrouck VD, Verfaillie CM, Van Gool SW (2013) Immunological characteristics of human mesenchymal stem cells and multipotent adult progenitor cells. Immunol Cell Biol 91(1):32–39.  https://doi.org/10.1038/icb.2012.64CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Rohban R, Pieber TR (2017) Mesenchymal stem and progenitor cells in regeneration: tissue specificity and regenerative potential. Stem Cells Int 2017:5173732.  https://doi.org/10.1155/2017/5173732CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Pittenger MF, Martin BJ (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95(1):9–20.  https://doi.org/10.1161/01.RES.0000135902.99383.6fCrossRefPubMedGoogle Scholar
  11. 11.
    Ma S, Xie N, Li W, Yuan B, Shi Y, Wang Y (2014) Immunobiology of mesenchymal stem cells. Cell Death Differ 21(2):216–225.  https://doi.org/10.1038/cdd.2013.158CrossRefPubMedGoogle Scholar
  12. 12.
    Kizilay Mancini O, Lora M, Cuillerier A, Shum-Tim D, Hamdy R, Burelle Y, Servant MJ, Stochaj U, Colmegna I (2018) Mitochondrial oxidative stress reduces the immunopotency of mesenchymal stromal cells in adults with coronary artery disease. Circ Res 122(2):255–266.  https://doi.org/10.1161/CIRCRESAHA.117.311400CrossRefPubMedGoogle Scholar
  13. 13.
    Kizilay Mancini O, Lora M, Shum-Tim D, Nadeau S, Rodier F, Colmegna I (2017) A proinflammatory secretome mediates the impaired immunopotency of human mesenchymal stromal cells in elderly patients with atherosclerosis. Stem Cells Transl Med 6(4):1132–1140.  https://doi.org/10.1002/sctm.16-0221CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621CrossRefGoogle Scholar
  15. 15.
    d’Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G, Carter NP, Jackson SP (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426(6963):194–198.  https://doi.org/10.1038/nature02118CrossRefPubMedGoogle Scholar
  16. 16.
    de Magalhaes JP, Passos JF (2018) Stress, cell senescence and organismal ageing. Mech Ageing Dev 170:2–9.  https://doi.org/10.1016/j.mad.2017.07.001CrossRefPubMedGoogle Scholar
  17. 17.
    Chandeck C, Mooi WJ (2010) Oncogene-induced cellular senescence. Adv Anat Pathol 17(1):42–48.  https://doi.org/10.1097/PAP.0b013e3181c66f4eCrossRefPubMedGoogle Scholar
  18. 18.
    Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192(4):547–556.  https://doi.org/10.1083/jcb.201009094CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    van Deursen JM (2014) The role of senescent cells in ageing. Nature 509(7501):439–446.  https://doi.org/10.1038/nature13193CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Luo Y, Zou P, Zou J, Wang J, Zhou D, Liu L (2011) Autophagy regulates ROS-induced cellular senescence via p21 in a p38 MAPKalpha dependent manner. Exp Gerontol 46(11):860–867.  https://doi.org/10.1016/j.exger.2011.07.005CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Munro J, Barr NI, Ireland H, Morrison V, Parkinson EK (2004) Histone deacetylase inhibitors induce a senescence-like state in human cells by a p16-dependent mechanism that is independent of a mitotic clock. Exp Cell Res 295(2):525–538.  https://doi.org/10.1016/j.yexcr.2004.01.017CrossRefPubMedGoogle Scholar
  22. 22.
    Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T (1993) p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362(6423):847–849.  https://doi.org/10.1038/362847a0CrossRefPubMedGoogle Scholar
  23. 23.
    Goldstein JC, Rodier F, Garbe JC, Stampfer MR, Campisi J (2005) Caspase-independent cytochrome c release is a sensitive measure of low-level apoptosis in cell culture models. Aging Cell 4(4):217–222.  https://doi.org/10.1111/j.1474-9726.2005.00163.xCrossRefPubMedGoogle Scholar
  24. 24.
    Ahmed AS, Sheng MH, Wasnik S, Baylink DJ, Lau KW (2017) Effect of aging on stem cells. World J Exp Med 7(1):1–10.  https://doi.org/10.5493/wjem.v7.i1.1CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Childs BG, Gluscevic M, Baker DJ, Laberge RM, Marquess D, Dananberg J, van Deursen JM (2017) Senescent cells: an emerging target for diseases of ageing. Nat Rev Drug Discov 16(10):718–735.  https://doi.org/10.1038/nrd.2017.116CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Gonzalez LC, Ghadaouia S, Martinez A, Rodier F (2016) Premature aging/senescence in cancer cells facing therapy: good or bad? Biogerontology 17(1):71–87.  https://doi.org/10.1007/s10522-015-9593-9CrossRefPubMedGoogle Scholar
  27. 27.
    Demaria M (2017) Senescent cells: new target for an old treatment? Mol Cell Oncol 4(3):e1299666.  https://doi.org/10.1080/23723556.2017.1299666CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, Kirkland JL, van Deursen JM (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479(7372):232–236.  https://doi.org/10.1038/nature10600CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR, Laberge RM, Vijg J, Van Steeg H, Dolle ME, Hoeijmakers JH, de Bruin A, Hara E, Campisi J (2014) An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 31(6):722–733.  https://doi.org/10.1016/j.devcel.2014.11.012CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Chang J, Wang Y, Shao L, Laberge RM, Demaria M, Campisi J, Janakiraman K, Sharpless NE, Ding S, Feng W, Luo Y, Wang X, Aykin-Burns N, Krager K, Ponnappan U, Hauer-Jensen M, Meng A, Zhou D (2016) Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med 22(1):78–83.  https://doi.org/10.1038/nm.4010CrossRefPubMedGoogle Scholar
  31. 31.
    Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, Saltness RA, Jeganathan KB, Verzosa GC, Pezeshki A, Khazaie K, Miller JD, van Deursen JM (2016) Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530(7589):184–189.  https://doi.org/10.1038/nature16932CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Childs BG, Baker DJ, Wijshake T, Conover CA, Campisi J, van Deursen JM (2016) Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 354(6311):472–477.  https://doi.org/10.1126/science.aaf6659CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Baar MP, Brandt RMC, Putavet DA, Klein JDD, Derks KWJ, Bourgeois BRM, Stryeck S, Rijksen Y, van Willigenburg H, Feijtel DA, van der Pluijm I, Essers J, van Cappellen WA, van IWF, Houtsmuller AB, Pothof J, de Bruin RWF, Madl T, Hoeijmakers JHJ, Campisi J, de Keizer PLJ (2017) Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169(1):132–147.e116.  https://doi.org/10.1016/j.cell.2017.02.031CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Demaria M, O’Leary MN, Chang J, Shao L, Liu S, Alimirah F, Koenig K, Le C, Mitin N, Deal AM, Alston S, Academia EC, Kilmarx S, Valdovinos A, Wang B, de Bruin A, Kennedy BK, Melov S, Zhou D, Sharpless NE, Muss H, Campisi J (2017) Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov 7(2):165–176.  https://doi.org/10.1158/2159-8290.CD-16-0241CrossRefPubMedGoogle Scholar
  35. 35.
    Farr JN, Xu M, Weivoda MM, Monroe DG, Fraser DG, Onken JL, Negley BA, Sfeir JG, Ogrodnik MB, Hachfeld CM, LeBrasseur NK, Drake MT, Pignolo RJ, Pirtskhalava T, Tchkonia T, Oursler MJ, Kirkland JL, Khosla S (2017) Targeting cellular senescence prevents age-related bone loss in mice. Nat Med 23(9):1072–1079.  https://doi.org/10.1038/nm.4385CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Jeon OH, Kim C, Laberge RM, Demaria M, Rathod S, Vasserot AP, Chung JW, Kim DH, Poon Y, David N, Baker DJ, van Deursen JM, Campisi J, Elisseeff JH (2017) Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med 23(6):775–781.  https://doi.org/10.1038/nm.4324CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Xu M, Pirtskhalava T, Farr JN, Weigand BM, Palmer AK, Weivoda MM, Inman CL, Ogrodnik MB, Hachfeld CM, Fraser DG, Onken JL, Johnson KO, Verzosa GC, Langhi LGP, Weigl M, Giorgadze N, LeBrasseur NK, Miller JD, Jurk D, Singh RJ, Allison DB, Ejima K, Hubbard GB, Ikeno Y, Cubro H, Garovic VD, Hou X, Weroha SJ, Robbins PD, Niedernhofer LJ, Khosla S, Tchkonia T, Kirkland JL (2018) Senolytics improve physical function and increase lifespan in old age. Nat Med 24(8):1246–1256.  https://doi.org/10.1038/s41591-018-0092-9CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kirkland JL, Tchkonia T, Zhu Y, Niedernhofer LJ, Robbins PD (2017) The clinical potential of senolytic drugs. J Am Geriatr Soc 65(10):2297–2301.  https://doi.org/10.1111/jgs.14969CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H, Giorgadze N, Palmer AK, Ikeno Y, Hubbard GB, Lenburg M, O’Hara SP, LaRusso NF, Miller JD, Roos CM, Verzosa GC, LeBrasseur NK, Wren JD, Farr JN, Khosla S, Stout MB, McGowan SJ, Fuhrmann-Stroissnigg H, Gurkar AU, Zhao J, Colangelo D, Dorronsoro A, Ling YY, Barghouthy AS, Navarro DC, Sano T, Robbins PD, Niedernhofer LJ, Kirkland JL (2015) The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14(4):644–658.  https://doi.org/10.1111/acel.12344CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Fumagalli M, Rossiello F, Clerici M, Barozzi S, Cittaro D, Kaplunov JM, Bucci G, Dobreva M, Matti V, Beausejour CM, Herbig U, Longhese MP, d’Adda di Fagagna F (2012) Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat Cell Biol 14(4):355–365.  https://doi.org/10.1038/ncb2466CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Rodier F, Munoz DP, Teachenor R, Chu V, Le O, Bhaumik D, Coppe JP, Campeau E, Beausejour CM, Kim SH, Davalos AR, Campisi J (2011) DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. J Cell Sci 124(Pt 1):68–81.  https://doi.org/10.1242/jcs.071340CrossRefPubMedGoogle Scholar
  42. 42.
    Hernandez-Segura A, Nehme J, Demaria M (2018) Hallmarks of cellular senescence. Trends Cell Biol 28(6):436–453.  https://doi.org/10.1016/j.tcb.2018.02.001CrossRefPubMedGoogle Scholar
  43. 43.
    Turinetto V, Vitale E, Giachino C (2016) Senescence in human mesenchymal stem cells: functional changes and implications in stem cell-based therapy. Int J Mol Sci 17(7).  https://doi.org/10.3390/ijms17071164CrossRefGoogle Scholar
  44. 44.
    Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R, Benes V, Blake J, Pfister S, Eckstein V, Ho AD (2008) Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One 3(5):e2213.  https://doi.org/10.1371/journal.pone.0002213CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Legzdina D, Romanauska A, Nikulshin S, Kozlovska T, Berzins U (2016) Characterization of senescence of culture-expanded human adipose-derived mesenchymal stem cells. Int J Stem Cells 9(1):124–136.  https://doi.org/10.15283/ijsc.2016.9.1.124CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Deryabin PI, Borodkina AV, Nikolsky NN, Burova EB (2015) Relationship between p53/p21/Rb and mapk signaling pathways in human endometrium-derived stem cells under oxidative stress. Tsitologiia 57(11):788–795PubMedGoogle Scholar
  47. 47.
    Medeiros Tavares Marques JC, Cornelio DA, Nogueira Silbiger V, Ducati Luchessi A, de Souza S, Batistuzzo de Medeiros SR (2017) Identification of new genes associated to senescent and tumorigenic phenotypes in mesenchymal stem cells. Sci Rep 7(1):17837.  https://doi.org/10.1038/s41598-017-16224-5CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Contrepois K, Coudereau C, Benayoun BA, Schuler N, Roux PF, Bischof O, Courbeyrette R, Carvalho C, Thuret JY, Ma Z, Derbois C, Nevers MC, Volland H, Redon CE, Bonner WM, Deleuze JF, Wiel C, Bernard D, Snyder MP, Rube CE, Olaso R, Fenaille F, Mann C (2017) Histone variant H2A.J accumulates in senescent cells and promotes inflammatory gene expression. Nat Commun 8:14995.  https://doi.org/10.1038/ncomms14995CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Narita M, Nunez S, Heard E, Narita M, Lin AW, Hearn SA, Spector DL, Hannon GJ, Lowe SW (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113(6):703–716CrossRefGoogle Scholar
  50. 50.
    Laberge RM, Adler D, DeMaria M, Mechtouf N, Teachenor R, Cardin GB, Desprez PY, Campisi J, Rodier F (2013) Mitochondrial DNA damage induces apoptosis in senescent cells. Cell Death Dis 4:e727.  https://doi.org/10.1038/cddis.2013.199CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Rodier F, Coppe JP, Patil CK, Hoeijmakers WA, Munoz DP, Raza SR, Freund A, Campeau E, Davalos AR, Campisi J (2009) Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 11(8):973–979.  https://doi.org/10.1038/ncb1909CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O (2009) Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc 4(12):1798–1806.  https://doi.org/10.1038/nprot.2009.191CrossRefPubMedGoogle Scholar
  53. 53.
    Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92(20):9363–9367CrossRefGoogle Scholar
  54. 54.
    Barnum KJ, O’Connell MJ (2014) Cell cycle regulation by checkpoints. Methods Mol Biol 1170:29–40.  https://doi.org/10.1007/978-1-4939-0888-2_2CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Qian Y, Chen X (2013) Senescence regulation by the p53 protein family. Methods Mol Biol 965:37–61.  https://doi.org/10.1007/978-1-62703-239-1_3CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Pani G, Colavitti R, Bedogni B, Anzevino R, Borrello S, Galeotti T (2000) A redox signaling mechanism for density-dependent inhibition of cell growth. J Biol Chem 275(49):38891–38899.  https://doi.org/10.1074/jbc.M007319200CrossRefPubMedGoogle Scholar
  57. 57.
    McHugh D, Gil J (2018) Senescence and aging: causes, consequences, and therapeutic avenues. J Cell Biol 217(1):65–77.  https://doi.org/10.1083/jcb.201708092CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    d’Adda di Fagagna F (2008) Living on a break: cellular senescence as a DNA-damage response. Nat Rev Cancer 8(7):512–522.  https://doi.org/10.1038/nrc2440CrossRefPubMedGoogle Scholar
  59. 59.
    Polo SE, Jackson SP (2011) Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev 25(5):409–433.  https://doi.org/10.1101/gad.2021311CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Kuo LJ, Yang LX (2008) Gamma-H2AX—a novel biomarker for DNA double-strand breaks. In Vivo 22(3):305–309PubMedGoogle Scholar
  61. 61.
    Rappold I, Iwabuchi K, Date T, Chen J (2001) Tumor suppressor p53 binding protein 1 (53BP1) is involved in DNA damage-signaling pathways. J Cell Biol 153(3):613–620CrossRefGoogle Scholar
  62. 62.
    Malaquin N, Martinez A, Rodier F (2016) Keeping the senescence secretome under control: molecular reins on the senescence-associated secretory phenotype. Exp Gerontol 82:39–49.  https://doi.org/10.1016/j.exger.2016.05.010CrossRefPubMedGoogle Scholar
  63. 63.
    Coppe JP, Desprez PY, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118.  https://doi.org/10.1146/annurev-pathol-121808-102144CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Malaquin N, Carrier-Leclerc A, Dessureault M, Rodier F (2015) DDR-mediated crosstalk between DNA-damaged cells and their microenvironment. Front Genet 6:94.  https://doi.org/10.3389/fgene.2015.00094CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Chien Y, Scuoppo C, Wang X, Fang X, Balgley B, Bolden JE, Premsrirut P, Luo W, Chicas A, Lee CS, Kogan SC, Lowe SW (2011) Control of the senescence-associated secretory phenotype by NF-kappaB promotes senescence and enhances chemosensitivity. Genes Dev 25(20):2125–2136.  https://doi.org/10.1101/gad.17276711CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Sepulveda JC, Tome M, Fernandez ME, Delgado M, Campisi J, Bernad A, Gonzalez MA (2014) Cell senescence abrogates the therapeutic potential of human mesenchymal stem cells in the lethal endotoxemia model. Stem Cells 32(7):1865–1877.  https://doi.org/10.1002/stem.1654CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Povirk LF (1996) DNA damage and mutagenesis by radiomimetic DNA-cleaving agents: bleomycin, neocarzinostatin and other enediynes. Mutat Res 355(1-2):71–89CrossRefGoogle Scholar
  68. 68.
    Chankova SG, Dimova E, Dimitrova M, Bryant PE (2007) Induction of DNA double-strand breaks by zeocin in Chlamydomonas reinhardtii and the role of increased DNA double-strand breaks rejoining in the formation of an adaptive response. Radiat Environ Biophys 46(4):409–416.  https://doi.org/10.1007/s00411-007-0123-2CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2019

Authors and Affiliations

  • Stéphanie Nadeau
    • 1
  • Anastasia Cheng
    • 2
  • Inés Colmegna
    • 2
    • 3
  • Francis Rodier
    • 1
    • 4
  1. 1.CRCHUM et Institut du cancer de MontréalMontrealCanada
  2. 2.Research Institute of the McGill University Health Centre (MUHC)MontrealCanada
  3. 3.Division of Rheumatology, Department of MedicineMcGill UniversityMontrealCanada
  4. 4.Université de Montréal, Département de Radiologie, Radio-Oncologie et Médicine NucléaireMontrealCanada

Personalised recommendations