Advertisement

Organoids pp 313-325 | Cite as

Cell Microencapsulation in Polyethylene Glycol Hydrogel Microspheres Using Electrohydrodynamic Spraying

  • Mozhdeh Imaninezhad
  • Era Jain
  • Silviya Petrova ZustiakEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1576)

Abstract

Microencapsulation of cells is beneficial for various biomedical applications, such as tissue regeneration and cell delivery. While a variety of techniques can be used to produce microspheres, electrohydrodynamic spraying (EHS) has shown promising results for the fabrication of cell-laden hydrogel microspheres in a wide range of sizes and in a relatively high-throughput manner. Here we describe an EHS technique for the fabrication of cell-laden polyethylene glycol (PEG) microspheres. We utilize mild hydrogel gelation chemistry and a combination of EHS parameters to allow for cell microencapsulation with high efficiency and viability. We also give examples on the effect of different EHS parameters such as inner diameter of the needle, voltage and flow rate on microsphere size and encapsulated cell viability.

Keywords:

Cell microencapsulation Electrospraying Hydrogels Microspheres Polyethylene glycol (PEG) 

References

  1. 1.
    Murua A, Portero A, Orive G, Hernández RM, de Castro M, Pedraz JL (2008) Cell microencapsulation technology: towards clinical application. J Control Release 132(2):76–83. doi: https://doi.org/10.1016/j.jconrel.2008.08.010CrossRefGoogle Scholar
  2. 2.
    Naqvi SM, Vedicherla S, Gansau J, McIntyre T, Doherty M, Buckley CT (2016) Living cell factories-electrosprayed microcapsules and microcarriers for minimally invasive delivery. Adv Mater 28(27):5662–5671CrossRefGoogle Scholar
  3. 3.
    Xie J, Wang C-H (2007) Electrospray in the dripping mode for cell microencapsulation. J Colloid Interface Sci 312(2):247–255. doi: https://doi.org/10.1016/j.jcis.2007.04.023CrossRefGoogle Scholar
  4. 4.
    Chen MC, Gupta M, Cheung KC (2010) Alginate-based microfluidic system for tumor spheroid formation and anticancer agent screening. Biomed Microdevices 12(4):647–654CrossRefGoogle Scholar
  5. 5.
    Zanoni M, Piccinini F, Arienti C, Zamagni A, Santi S, Polico R, Bevilacqua A, Tesei A (2016) 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Sci Rep 6:19103Google Scholar
  6. 6.
    Wilson JL, McDevitt TC (2013) Stem cell microencapsulation for phenotypic control, bioprocessing, and transplantation. Biotechnol Bioeng 110(3):667–682CrossRefGoogle Scholar
  7. 7.
    Orive G, Gascón AR, Hernández RM, Igartua M, Pedraz JL (2003) Cell microencapsulation technology for biomedical purposes: novel insights and challenges. Trends Pharmacol Sci 24(5):207–210CrossRefGoogle Scholar
  8. 8.
    Leach JB, Schmidt CE (2005) Characterization of protein release from photocrosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds. Biomaterials 26(2):125–135. doi: https://doi.org/10.1016/j.biomaterials.2004.02.018CrossRefGoogle Scholar
  9. 9.
    Mahoney MJ, Anseth KS (2006) Three-dimensional growth and function of neural tissue in degradable polyethylene glycol hydrogels. Biomaterials 27(10):2265–2274CrossRefGoogle Scholar
  10. 10.
    Yang Y-Y, Chung T-S, Ping Ng N (2001) Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials 22(3):231–241. doi: http://dx.doi.org/10.1016/S0142-9612(00)00178-2CrossRefGoogle Scholar
  11. 11.
    Freiberg S, Zhu XX (2004) Polymer microspheres for controlled drug release. Int J Pharm 282(1-2):1–18. doi: https://doi.org/10.1016/j.ijpharm.2004.04.013CrossRefGoogle Scholar
  12. 12.
    Liu K, Ding H-J, Liu J, Chen Y, Zhao X-Z (2006) Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device. Langmuir 22(22):9453–9457. doi: 10.1021/la061729+ CrossRefPubMedGoogle Scholar
  13. 13.
    Cohen S, Bano MC, Visscher KB, Chow M, Allcock HR, Langer R (1990) Ionically crosslinkable polyphosphazene: a novel polymer for microencapsulation. J Am Chem Soc 112(21):7832–7833CrossRefGoogle Scholar
  14. 14.
    Shintaku H, Kuwabara T, Kawano S, Suzuki T, Kanno I, Kotera H (2007) Micro cell encapsulation and its hydrogel-beads production using microfluidic device. Microsyst Technol 13(8-10):951–958CrossRefGoogle Scholar
  15. 15.
    Velve-Casquillas G, Le Berre M, Piel M, Tran PT (2010) Microfluidic tools for cell biological research. Nano Today 5(1):28–47. doi: 10.1016/j.nantod.2009.12.001 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Gasperini L, Maniglio D, Migliaresi C (2013) Microencapsulation of cells in alginate through an electrohydrodynamic process. J Bioact Compat Polym 28(5):413–425CrossRefGoogle Scholar
  17. 17.
    Young CJ, Poole-Warren LA, Martens PJ (2012) Combining submerged electrospray and UV photopolymerization for production of synthetic hydrogel microspheres for cell encapsulation. Biotechnol Bioeng 109(6):1561–1570CrossRefGoogle Scholar
  18. 18.
    Zustiak SP, Pubill S, Ribeiro A, Leach JB (2013) Hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds as a cell delivery vehicle: characterization of PC12 cell response. Biotechnol Prog 29(5):1255–1264. doi: 10.1002/btpr.1761 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Jain E, Scott KM, Zustiak SP, Sell SA (2015) Fabrication of polyethylene glycol-based hydrogel microspheres through electrospraying. Macromol Mater Eng 300(8):823–835. doi: 10.1002/mame.201500058 CrossRefGoogle Scholar
  20. 20.
    Qayyum AS, Jain E, Kolar G, Kim Y, Sell SA, Zustiak SP (2017) Design of electrohydrodynamic sprayed polyethylene glycol hydrogel microspheres for cell encapsulation. Biofabrication 9(2):025019CrossRefGoogle Scholar
  21. 21.
    Zustiak SP, Leach JB (2010) Hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds with tunable degradation and mechanical properties. Biomacromolecules 11(5):1348–1357. doi: 10.1021/bm100137q CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Jain E, Hill L, Canning E, Sell SA, Zustiak SP (2017) Control of gelation, degradation and physical properties of polyethylene glycol hydrogels through the chemical and physical identity of the crosslinker. J Mater Chem B 5(14):2679–2691. doi: 10.1039/c6tb03050e CrossRefGoogle Scholar
  23. 23.
    Lutolf M, Hubbell J (2003) Synthesis and physicochemical characterization of end-linked poly (ethylene glycol)-co-peptide hydrogels formed by Michael-type addition. Biomacromolecules 4(3):713–722CrossRefGoogle Scholar
  24. 24.
    López-Herrera J, Barrero A, Boucard A, Loscertales I, Márquez M (2004) An experimental study of the electrospraying of water in air at atmospheric pressure. J Am Soc Mass Spectrom 15(2):253–259CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Mozhdeh Imaninezhad
    • 1
  • Era Jain
    • 2
  • Silviya Petrova Zustiak
    • 1
    • 3
    Email author
  1. 1.Department of Biomedical EngineeringSaint Louis UniversitySt. LouisUSA
  2. 2.Department of Biomedical EngineeringWashington University in Saint LouisSt. LouisUSA
  3. 3.Parks College of Engineering, Aviation and TechnologySaint Louis UniversitySt. LouisUSA

Personalised recommendations