Organoids pp 327-337 | Cite as

Gastrointestinal Epithelial Organoid Cultures from Postsurgical Tissues

  • Soojung Hahn
  • Jongman YooEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1576)


An organoid is a cellular structure three-dimensionally (3D) cultured from self-organizing stem cells in vitro, which has a cell population, architectures, and organ specific functions like the originating organs. Recent advances in the 3D culture of isolated intestinal crypts or gastric glands have enabled the generation of human gastrointestinal epithelial organoids. Gastrointestinal organoids recapitulate the human in vivo physiology because of all the intestinal epithelial cell types that differentiated and proliferated from tissue resident stem cells. Thus far, gastrointestinal organoids have been extensively used for generating gastrointestinal disease models. This protocol describes the method of isolating a gland or crypt using stomach or colon tissue after surgery and establishing them into gastroids or colonoids.


Colonoid Gastroid Gastrointestinal epithelium Organoid Postsurgical tissues 



This work was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & future Planning, Republic of Korea (NRF-2016M3A9D9945475) and by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute, funded by the Ministry of Health & Welfare, Republic of Korea (HI16C1634, HI17C2094).


  1. 1.
    Willyard C (2015) The boom in mini stomachs, brains, breasts, kidneys and more. Nature 523(7562):520–522. doi: 10.1038/523520a CrossRefPubMedGoogle Scholar
  2. 2.
    Clevers H (2016) Modeling development and disease with organoids. Cell 165(7):1586–1597. doi: 10.1016/j.cell.2016.05.082 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bredenoord AL, Clevers H, Knoblich JA (2017) Human tissues in a dish: the research and ethical implications of organoid technology. Science 355(6322). doi: 10.1126/science.aaf9414 CrossRefGoogle Scholar
  4. 4.
    Yui S, Nakamura T, Sato T, Nemoto Y, Mizutani T, Zheng X, Ichinose S, Nagaishi T, Okamoto R, Tsuchiya K, Clevers H, Watanabe M (2012) Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5(+) stem cell. Nat Med 18(4):618–623. doi: 10.1038/nm.2695 CrossRefPubMedGoogle Scholar
  5. 5.
    Fordham RP, Yui S, Hannan NR, Soendergaard C, Madgwick A, Schweiger PJ, Nielsen OH, Vallier L, Pedersen RA, Nakamura T, Watanabe M, Jensen KB (2013) Transplantation of expanded fetal intestinal progenitors contributes to colon regeneration after injury. Cell Stem Cell 13(6):734–744. doi: 10.1016/j.stem.2013.09.015 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Stange DE, Koo BK, Huch M, Sibbel G, Basak O, Lyubimova A, Kujala P, Bartfeld S, Koster J, Geahlen JH, Peters PJ, van Es JH, van de Wetering M, Mills JC, Clevers H (2013) Differentiated troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell 155(2):357–368. doi: 10.1016/j.cell.2013.09.008 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ, Clevers H (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459(7244):262–265. doi: 10.1038/nature07935 CrossRefGoogle Scholar
  8. 8.
    Jung P, Sato T, Merlos-Suarez A, Barriga FM, Iglesias M, Rossell D, Auer H, Gallardo M, Blasco MA, Sancho E, Clevers H, Batlle E (2011) Isolation and in vitro expansion of human colonic stem cells. Nat Med 17(10):1225–1227. doi: 10.1038/nm.2470 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Huch M, Dorrell C, Boj SF, van Es JH, Li VS, van de Wetering M, Sato T, Hamer K, Sasaki N, Finegold MJ, Haft A, Vries RG, Grompe M, Clevers H (2013) In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494(7436):247–250. doi: 10.1038/nature11826 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Huch M, Bonfanti P, Boj SF, Sato T, Loomans CJ, van de Wetering M, Sojoodi M, Li VS, Schuijers J, Gracanin A, Ringnalda F, Begthel H, Hamer K, Mulder J, van Es JH, de Koning E, Vries RG, Heimberg H, Clevers H (2013) Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J 32(20):2708–2721. doi: 10.1038/emboj.2013.204 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Koo BK, Clevers H (2014) Stem cells marked by the R-spondin receptor LGR5. Gastroenterology 147(2):289–302. doi: 10.1053/j.gastro.2014.05.007 CrossRefPubMedGoogle Scholar
  12. 12.
    de Lau W, Barker N, Low TY, Koo BK, Li VS, Teunissen H, Kujala P, Haegebarth A, Peters PJ, van de Wetering M, Stange DE, van Es JE, Guardavaccaro D, Schasfoort RB, Mohri Y, Nishimori K, Mohammed S, Heck AJ, Clevers H (2011) Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 476(7360):293–297. doi: 10.1038/nature10337 CrossRefPubMedGoogle Scholar
  13. 13.
    Wang F, Scoville D, He XC, Mahe MM, Box A, Perry JM, Smith NR, Lei NY, Davies PS, Fuller MK, Haug JS, McClain M, Gracz AD, Ding S, Stelzner M, Dunn JC, Magness ST, Wong MH, Martin MG, Helmrath M, Li L (2013) Isolation and characterization of intestinal stem cells based on surface marker combinations and colony-formation assay. Gastroenterology 145(2):383–395. e381-321. doi: 10.1053/j.gastro.2013.04.050 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Microbiology and Institute of Basic Medical Sciences, School of MedicineCHA UniversitySeongnam-siSouth Korea
  2. 2.CHA BiocomplexSeongnam-siSouth Korea

Personalised recommendations