Organoids pp 291-299 | Cite as

Use of a Super-hydrophobic Microbioreactor to Generate and Boost Pancreatic Mini-organoids

  • Tiziana A. L. BreviniEmail author
  • Elena F. M. Manzoni
  • Sergio Ledda
  • Fulvio Gandolfi
Part of the Methods in Molecular Biology book series (MIMB, volume 1576)


Cell remarkable ability to self-organize and rearrange in functional organoids has been greatly boosted by the recent advances in 3-D culture technologies and materials. This approach can be presently applied to model human organ development and function “in a dish” and to predict drug response in a patient specific fashion.

Here we describe a protocol that allows for the derivation of functional pancreatic mini-organoids from skin biopsies. Cells are suspended in a drop of medium and encapsulated with hydrophobic polytetrafluoroethylene (PTFE) powder particles, to form microbioreactors defined as “Liquid Marbles,” that stimulate cell coalescence and 3-D aggregation. The PTFE shell ensures an optimal gas exchange between the interior liquid and the surrounding environment. It also makes it possible to scale down experiments and work in smaller volumes and is therefore amenable for higher throughput applications.


Fibroblast Epigenetic Microbioreactor PTFE Pancreatic organoid 



This work was supported by Carraresi Foundation. Authors are members of the COST Actions CA16119. TALB participates to COST Action CM1406.


  1. 1.
    Simian M, Bissell MJ (2017) Organoids: a historical perspective of thinking in three dimensions. J Cell Biol 216(1):31–40. doi: 10.1083/jcb.201610056 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Clevers H (2016) Modeling development and disease with organoids. Cell 165(7):1586–1597. doi: 10.1016/j.cell.2016.05.082 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Tian J, Fu N, Chen XD, Shen W (2013) Respirable liquid marble for the cultivation of microorganisms. Colloids Surf B Biointerfaces 106:187–190. doi: 10.1016/j.colsurfb.2013.01.016 CrossRefPubMedGoogle Scholar
  4. 4.
    Arbatan T, Al-Abboodi A, Sarvi F, Chan PP, Shen W (2012) Tumor inside a pearl drop. Adv Healthc Mater 1(4):467–469. doi: 10.1002/adhm.201200050 CrossRefPubMedGoogle Scholar
  5. 5.
    Serrano MC, Nardecchia S, Gutierrez MC, Ferrer ML, del Monte F (2015) Mammalian cell cryopreservation by using liquid marbles. ACS Appl Mater Interfaces 7(6):3854–3860. doi: 10.1021/acsami.5b00072 CrossRefPubMedGoogle Scholar
  6. 6.
    Arbatan T, Li LZ, Tian JF, Shen W (2012) Liquid marbles as micro-bioreactors for rapid blood typing. Adv Healthc Mater 1(1):80–83. doi: 10.1002/adhm.201100016 CrossRefPubMedGoogle Scholar
  7. 7.
    Sarvi F, Jain K, Arbatan T, Verma PJ, Hourigan K, Thompson MC, Shen W, Chan PPY (2015) Cardiogenesis of embryonic stem cells with liquid marble micro-bioreactor. Adv Healthc Mater 4(1). doi: 10.1002/adhm.201400138 CrossRefGoogle Scholar
  8. 8.
    Ledda S, Idda A, Kelly J, Ariu F, Bogliolo L, Bebbere D (2016) A novel technique for in vitro maturation of sheep oocytes in a liquid marble microbioreactor. J Assist Reprod Genet 33(4):513–518. doi: 10.1007/s10815-016-0666-8 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Vadivelu RK, Ooi CH, Yao RQ, Tello Velasquez J, Pastrana E, Diaz-Nido J, Lim F, Ekberg JA, Nguyen NT, St John JA (2015) Generation of three-dimensional multiple spheroid model of olfactory ensheathing cells using floating liquid marbles. Sci Rep 5:15083. doi: 10.1038/srep15083 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Sarvi F, Arbatan T, Chan PPY, Shen W (2013) A novel technique for the formation of embryoid bodies inside liquid marbles. RSC Adv 3(34):14501–14508. doi: 10.1039/c3ra40364e CrossRefGoogle Scholar
  11. 11.
    Pennarossa G, Maffei S, Campagnol M, Tarantini L, Gandolfi F, Brevini TA (2013) Brief demethylation step allows the conversion of adult human skin fibroblasts into insulin-secreting cells. Proc Natl Acad Sci U S A 110(22):8948–8953. doi: 10.1073/pnas.1220637110 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Brevini TA, Pennarossa G, Rahman MM, Paffoni A, Antonini S, Ragni G, deEguileor M, Tettamanti G, Gandolfi F (2014) Morphological and molecular changes of human granulosa cells exposed to 5-azacytidine and addressed toward muscular differentiation. Stem Cell Rev. doi: 10.1007/s12015-014-9521-4 CrossRefGoogle Scholar
  13. 13.
    Manzoni EF, Pennarossa G, deEguileor M, Tettamanti G, Gandolfi F, Brevini TA (2016) 5-Azacytidine affects TET2 and histone transcription and reshapes morphology of human skin fibroblasts. Sci Rep 6:37017. doi: 10.1038/srep37017 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Tiziana A. L. Brevini
    • 1
    Email author
  • Elena F. M. Manzoni
    • 1
  • Sergio Ledda
    • 2
  • Fulvio Gandolfi
    • 1
  1. 1.Laboratory of Biomedical Embryology, Centre for Stem Cell ResearchUniversità degli Studi di MilanoMilanItaly
  2. 2.Department of Veterinary MedicineUniversità degli Studi di SassariSassariItaly

Personalised recommendations