Organoids pp 255-271 | Cite as

Disaggregation and Reaggregation of Zebrafish Retinal Cells for the Analysis of Neuronal Layering

  • Megan K. EldredEmail author
  • Leila Muresan
  • William A. Harris
Part of the Methods in Molecular Biology book series (MIMB, volume 1576)


The reaggregation of dissociated cells to form organotypic structures provides an in vitro system for the analysis of the cellular interactions and molecular mechanisms involved in the formation of tissue architecture. The retina, an outgrowth of the forebrain, is a precisely layered neural tissue, yet the mechanisms underlying layer formation are largely unexplored. Here we describe the protocol to dissociate, re-aggregate, and culture zebrafish retinal cells from a transgenic, Spectrum of Fates, line where all main cell types are labelled with a combination of fluorescent proteins driven by fate-specific promoters. These cells re-aggregate and self-organize in just 48 h in minimal culture conditions. We also describe how the patterning in these aggregates can be analyzed using isocontour profiling to compare whether different conditions affect their self-organization.


3D Petri dish Aggregation Isocontour profiling Müller Glia Organoid Retina Self-organization SoFa Zebrafish 



We are grateful to Alexandra D. Almeida for useful discussions during the preparation of this manuscript. We also thank Mark Charlton-Perkins, Ryan MacDonald, and Afnan Azizi for their discussions and contributions to the original research manuscript where the protocols were developed.

This work was funded by a Wellcome Trust Senior Investigator Award to W.A.H. (100329/Z/12/Z) and a Biotechnology and Biological Sciences Research Council.

Studentship Award to M.K.E. (BB/J014540/1).


  1. 1.
    Holt CE, Bertsch TW, Ellis HM, Harris WA (1988) Cellular determination in the xenopus retina is independent of lineage and birth date. Neuron 1:15–26. doi: 10.1016/0896-6273(88)90205-XCrossRefPubMedGoogle Scholar
  2. 2.
    Almeida AD, Boije H, Chow RW et al (2014) Spectrum of fates: a new approach to the study of the developing zebrafish retina. Development 141:1971–1980. doi: 10.1242/dev.104760CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Chow RW-Y, Almeida AD, Randlett O et al (2015) Inhibitory neuron migration and IPL formation in the developing zebrafish retina. Development. doi: 10.1242/dev.122473CrossRefGoogle Scholar
  4. 4.
    Icha J, Kunath C, Rocha-Martins M, Norden C (2016) Independent modes of ganglion cell translocation ensure correct lamination of the zebrafish retina. J Cell Biol 215:259–275. doi: 10.1083/jcb.201604095CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Randlett O, MacDonald RB, Yoshimatsu T et al (2013) Cellular requirements for building a retinal neuropil. Cell Rep 3:282–290. doi: 10.1016/j.celrep.2013.01.020CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Herbst C (1900) über das Auseinandergehen von Furchungs- und Gewebezellen in kalkfreiem Medium. Arch für Entwicklungsmechanik der Org 9:424–463. doi: 10.1007/BF02156626CrossRefGoogle Scholar
  7. 7.
    Wilson HV (1907) On some phenomena of coalescence and regeneration in sponges. J Exp Zool 5:245–258. doi: 10.1002/jez.1400050204CrossRefGoogle Scholar
  8. 8.
    Moscona A, Moscona H (1952) The dissociation and aggregation of cells from organ rudiments of the early chick embryo. J Anat 86:287–301PubMedPubMedCentralGoogle Scholar
  9. 9.
    Moscona A (1961) Rotation-mediated histogenetic aggregation of dissociated cells. Exp Cell Res 22:455–475. doi: 10.1016/0014-4827(61)90122-7CrossRefPubMedGoogle Scholar
  10. 10.
    Layer PG, Willbold E (1993) Histogenesis of the avian retina in reaggregation culture: from dissociated cells to laminar neuronal networks. Int Rev Cytol 146:1–47CrossRefGoogle Scholar
  11. 11.
    Layer PG, Willbold E (1994) Regeneration of the avian retina by retinospheroid technology. Prog Retin Eye Res 13:197–230. doi: 10.1016/1350-9462(94)90010-8CrossRefGoogle Scholar
  12. 12.
    Rothermel A, Willbold E, Degrip WJ, Layer PG (1997) Pigmented epithelium induces complete retinal reconstitution from dispersed embryonic chick retinae in reaggregation culture. Proc Biol Sci 264:1293–1302. doi: 10.1098/rspb.1997.0179CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Eldred MK, Charlton-Perkins M, Muresan L, Harris WA (2017) Self-organising aggregates of zebrafish retinal cells for investigating mechanisms of neural lamination. Development 144:1097–1106. doi: 10.1242/dev.142760CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kimmel CB, Ballard WW, Kimmel SR et al (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310. doi: 10.1002/aja.1002030302CrossRefPubMedGoogle Scholar
  15. 15.
    Bernardos RL, Raymond PA (2006) GFAP transgenic zebrafish. Gene Expr Patterns 6:1007–1013. doi: 10.1016/j.modgep.2006.04.006CrossRefPubMedGoogle Scholar
  16. 16.
    Napolitano AP, Dean DM, Man AJ et al (2007) Scaffold-free three-dimensional cell culture utilizing micromolded nonadhesive hydrogels. Biotechniques 43(494):496–500Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Megan K. Eldred
    • 1
    Email author
  • Leila Muresan
    • 1
  • William A. Harris
    • 1
  1. 1.Department of Physiology, Development and NeuroscienceCambridge UniversityCambridgeUK

Personalised recommendations