Organoids pp 229-247 | Cite as

Human Intestinal Enteroids: New Models to Study Gastrointestinal Virus Infections

  • Winnie Y. Zou
  • Sarah E. Blutt
  • Sue E. Crawford
  • Khalil Ettayebi
  • Xi-Lei Zeng
  • Kapil Saxena
  • Sasirekha Ramani
  • Umesh C. Karandikar
  • Nicholas C. Zachos
  • Mary K. EstesEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1576)


Human rotavirus (HRV) and human norovirus (HuNoV) infections are recognized as the most common causes of epidemic and sporadic cases of gastroenteritis worldwide. The study of these two human gastrointestinal viruses is important for understanding basic virus-host interactions and mechanisms of pathogenesis and to establish models to evaluate vaccines and treatments. Despite the introduction of live-attenuated vaccines to prevent life-threatening HRV-induced disease, the burden of HRV illness remains significant in low-income and less-industrialized countries, and small animal models or ex vivo models to study HRV infections efficiently are lacking. Similarly, HuNoVs remained non-cultivatable until recently. With the advent of non-transformed human intestinal enteroid (HIE) cultures, we are now able to culture and study both clinically relevant HRV and HuNoV in a biologically relevant human system. Methods described here will allow investigators to use these new culture techniques to grow HRV and HuNoV and analyze new aspects of virus replication and pathogenesis.


Gastrointestinal viral infections HIEs Human intestinal enteroids Human norovirus Human rotavirus 



The techniques described in this article were developed by research on rotaviruses and noroviruses that was supported by National Institutes of Health (NIH) Grants U19-AI116497, R01 AI080656, PO1 AI 057788 (to Mary K. Estes), U18-TR000552 (to Mark Donowitz), P30 DK-56338 (to Hashem El-Serag), F30 DK107173 (to Winnie Zou), Agriculture and Food Research Initiative competitive grant 2011-68003-30395 from the USDA National Institute of Food and Agriculture (to LeAnn Jaykus), and Howard Hughes Medical Institute Grant 570076890 (to Kapil Saxena).


  1. 1.
    Mortality and Causes of Death Collaborators (2016) Global, regional, national, and selected subnational levels of stillbirths, neonatal, infant, and under-5 mortality, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388(10053):1725–1774. doi: 10.1016/s0140-6736(16)31575-6. Epub 2016/10/14. PubMed PMID: 27733285CrossRefGoogle Scholar
  2. 2.
    Mortality and Causes of Death Collaborators (2016) Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388(10053):1459–1544. doi: 10.1016/s0140-6736(16)31012-1. Epub 2016/10/14. PubMed PMID: 27733281CrossRefGoogle Scholar
  3. 3.
    Glass RI, Parashar UD, Estes MK (2009) Norovirus gastroenteritis. New Engl J Med 361(18):1776–1785. Epub 2009/10/30. doi: 10.1056/NEJMra0804575. PubMed PMID: 19864676; PMCID: PMC3880795CrossRefGoogle Scholar
  4. 4.
    Parashar UD, Burton A, Lanata C, Boschi-Pinto C, Shibuya K, Steele D, Birmingham M, Glass RI (2009) Global mortality associated with rotavirus disease among children in 2004. J Infect Dis 200(Suppl 1):S9–S15. doi: 10.1086/605025. Epub 2009/10/13. PubMed PMID: 19817620CrossRefPubMedGoogle Scholar
  5. 5.
    Estes MK, Greenberg HB (2013) Rotaviruses. In: Knipe DM, Howley PM (eds) Fields virology, 6th edn. Lippincott Williams & Wilkins, Philadelphia, PA, pp 1347–1401Google Scholar
  6. 6.
    Ahmed SM, Hall AJ, Robinson AE, Verhoef L, Premkumar P, Parashar UD, Koopmans M, Lopman BA (2014) Global prevalence of norovirus in cases of gastroenteritis: a systematic review and meta-analysis. Lancet Infect Dis 14(8):725–730. doi: 10.1016/s1473-3099(14)70767-4. Epub 2014/07/02. PubMed PMID: 24981041CrossRefPubMedGoogle Scholar
  7. 7.
    Bryce J, Boschi-Pinto C, Shibuya K, Black RE (2005) WHO estimates of the causes of death in children. Lancet 365(9465):1147–1152. doi: 10.1016/s0140-6736(05)71877-8. Epub 2005/03/30CrossRefPubMedGoogle Scholar
  8. 8.
    Vesikari T (2012) Rotavirus vaccination: a concise review. Clin Microbiol Infect 18(Suppl 5):57–63. doi: 10.1111/j.1469-0691.2012.03981.x. Epub 2012/08/14. PubMed PMID: 22882248CrossRefPubMedGoogle Scholar
  9. 9.
    Vesikari T (2016) Rotavirus vaccine and vaccination. In: Svensson L, Desselberger U, Greenberg HB, Estes MK (eds) Viral gastroenteritis: molecular epidemiology and pathogenesis. Academic Press, pp 301–328Google Scholar
  10. 10.
    McCormick BJ, Lang DR (2016) Diarrheal disease and enteric infections in LMIC communities: how big is the problem? Trop Dis Travel Med Vaccines 2(1):11CrossRefGoogle Scholar
  11. 11.
    Payne DC, Vinje J, Szilagyi PG, Edwards KM, Staat MA, Weinberg GA, Hall CB, Chappell J, Bernstein DI, Curns AT, Wikswo M, Shirley SH, Hall AJ, Lopman B, Parashar UD (2013) Norovirus and medically attended gastroenteritis in U.S. children. New Engl J Med 368(12):1121–1130. doi: 10.1056/NEJMsa1206589. Epub 2013/03/22. PubMed PMID: 23514289; PMCID: PMC4618551CrossRefGoogle Scholar
  12. 12.
    Ettayebi K, Crawford SE, Murakami K, Broughman JR, Karandikar U, Tenge VR, Neill FH, Blutt SE, Zeng XL, Qu L, Kou B, Opekun AR, Burrin D, Graham DY, Ramani S, Atmar RL, Estes MK (2016) Replication of human noroviruses in stem cell-derived human enteroids. Science. doi:  10.1126/science.aaf5211. PubMed PMID: 27562956. Epub 2016/08/27CrossRefGoogle Scholar
  13. 13.
    Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ, Clevers H (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459(7244):262–265. doi: 10.1038/nature07935. Epub 2009/03/31. PubMed PMID: 19329995CrossRefGoogle Scholar
  14. 14.
    Sato T, Clevers H (2013) Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science 340(6137):1190–1194. doi: 10.1126/science.1234852. Epub 2013/06/08. PubMed PMID: 23744940CrossRefGoogle Scholar
  15. 15.
    Sato T, Stange DE, Ferrante M, Vries RG, van Es JH, van den Brink S, van Houdt WJ, Pronk A, van Gorp J, Siersema PD (2011) Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology 141(5):1762–1772CrossRefGoogle Scholar
  16. 16.
    In JG, Foulke-Abel J, Estes MK, Zachos NC, Kovbasnjuk O, Donowitz M (2016) Human mini-guts: new insights into intestinal physiology and host-pathogen interactions. Nat Rev Gastroenterol Hepatol 13(11):633–642CrossRefGoogle Scholar
  17. 17.
    Middendorp S, Schneeberger K, Wiegerinck CL, Mokry M, Akkerman RD, Wijngaarden S, Clevers H, Nieuwenhuis EE (2014) Adult stem cells in the small intestine are intrinsically programmed with their location-specific function. Stem Cells 32(5):1083–1091CrossRefGoogle Scholar
  18. 18.
    Saxena K, Blutt SE, Ettayebi K, Zeng XL, Broughman JR, Crawford SE, Karandikar UC, Sastri NP, Conner ME, Opekun AR, Graham DY, Qureshi W, Sherman V, Foulke-Abel J, In J, Kovbasnjuk O, Zachos NC, Donowitz M, Estes MK (2016) Human intestinal enteroids: a new model to study human rotavirus infection, host restriction, and pathophysiology. J Virol 90(1):43–56. doi: 10.1128/jvi.01930-15. Epub 2015/10/09. PubMed PMID: 26446608; PMCID: PMC4702582CrossRefPubMedGoogle Scholar
  19. 19.
    Saxena K, Simon LM, Zeng XL, Blutt SE, Crawford SE, Sastri NP, Karandikar UC, Ajami NJ, Zachos NC, Kovbasnjuk O, Donowitz M, Conner ME, Shaw CA, Estes MK (2017) A paradox of transcriptional and functional innate interferon responses of human intestinal enteroids to enteric virus infection. Proc Natl Acad Sci USA 114(4):E570-E579. doi: 10.1073/pnas.1615422114. Pubmed PMID: 28069942, PMCID: PMC5278484CrossRefGoogle Scholar
  20. 20.
    Mahe MM, Sundaram N, Watson CL, Shroyer NF, Helmrath MA (2015) Establishment of human epithelial enteroids and colonoids from whole tissue and biopsy. J Vis Exp. (97). doi:10.3791/52483. PubMedPMID: 25866936, PMCID: PMC4401205Google Scholar
  21. 21.
    Jiang X, Wang M, Graham DY, Estes MK (1992) Expression, self-assembly, and antigenicity of the Norwalk virus capsid protein. J Virol 66(11):6527–6532PubMedPubMedCentralGoogle Scholar
  22. 22.
    Wang F, Scoville D, He XC, Mahe MM, Box A, Perry JM, Smith NR, Lei NY, Davies PS, Fuller MK, Haug JS, McClain M, Gracz AD, Ding S, Stelzner M, Dunn JC, Magness ST, Wong MH, Martin MG, Helmrath M, Li L (2013) Isolation and characterization of intestinal stem cells based on surface marker combinations and colony-formation assay. Gastroenterology. 145(2):383–395.e1-21. doi:  10.1053/j.gastro.2013.04.050. Epub 2013/05/07. PubMed PMID: 23644405; PMCID: PMC3781924CrossRefGoogle Scholar
  23. 23.
    Arnold M, Patton JT, McDonald SM (2009) Culturing, storage, and quantification of rotaviruses. Current protocols in microbiology. Chapter 15:Unit 15C.3. Epub 2009/11/04. doi: 10.1002/9780471729259.mc15c03s15. PubMed PMID: 19885940; PMCID: PMC3403738Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Winnie Y. Zou
    • 1
  • Sarah E. Blutt
    • 1
  • Sue E. Crawford
    • 1
  • Khalil Ettayebi
    • 1
  • Xi-Lei Zeng
    • 1
  • Kapil Saxena
    • 1
  • Sasirekha Ramani
    • 1
  • Umesh C. Karandikar
    • 1
  • Nicholas C. Zachos
    • 3
  • Mary K. Estes
    • 1
    • 2
    Email author
  1. 1.Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonUSA
  2. 2.Department of MedicineBaylor College of MedicineHoustonUSA
  3. 3.Division of Gastroenterology and Hepatology, Department of MedicineJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations