Organoids pp 23-31 | Cite as

Organoid Culture of Human Cancer Stem Cells

  • Yohei ShimonoEmail author
  • Junko Mukohyama
  • Taichi Isobe
  • Darius M. Johnston
  • Piero Dalerba
  • Akira Suzuki
Part of the Methods in Molecular Biology book series (MIMB, volume 1576)


Organoid culture is a three-dimensional culture method that enables ex vivo analysis of stem cell behavior and differentiation. This method is also applicable to the studies on stem cell characters of human cancer stem cells. The components of organoid culture include Matrigel® and a culture medium containing growth factor cocktails that mimic the microenvironments of organ stem cell niches. Here, we describe the basic methods for the organoid culture of dissociated or FACS-sorted human cancer stem cells. Then, we introduce a method to dissociate the organoids for serial passage and propagation.


Organoids Cancer stem cells Clonogenicity Matrigel Growth factor cocktails Passage 



We thank the divisions of Breast and Endocrine Surgery and of Gastrointestinal Surgery of Kobe University Graduate School of Medicine, and the division of Surgery of Nagoya University for contribution in the patient tumor collection.

This study was supported by Grants-in-Aid for Scientific Research from the Japan Society of the Promotion of Science and by the grants from Japan Foundation for Applied Enzymology and the Itoh-Chubei Foundation to Y.S.


  1. 1.
    Clevers H (2015) STEM CELLS. What is an adult stem cell? Science 350(6266):1319–1320. doi: 10.1126/science.aad7016 CrossRefPubMedGoogle Scholar
  2. 2.
    Huch M, Koo BK (2015) Modeling mouse and human development using organoid cultures. Development 142(18):3113–3125. doi: 10.1242/dev.118570 CrossRefPubMedGoogle Scholar
  3. 3.
    Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ, Clevers H (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459(7244):262–265. doi: 10.1038/nature07935, nature07935CrossRefGoogle Scholar
  4. 4.
    Ootani A, Li X, Sangiorgi E, Ho QT, Ueno H, Toda S, Sugihara H, Fujimoto K, Weissman IL, Capecchi MR, Kuo CJ (2009) Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat Med 15(6):701–706. doi: 10.1038/nm.1951 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Clevers H (2016) Modeling development and disease with organoids. Cell 165(7):1586–1597. doi: 10.1016/j.cell.2016.05.082 CrossRefPubMedGoogle Scholar
  6. 6.
    Shimono Y, Mukohyama J, Nakamura S, Minami H (2015) MicroRNA regulation of human breast cancer stem cells. J Clin Med 5(1). doi:10.3390/jcm5010002CrossRefGoogle Scholar
  7. 7.
    Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM (2006) Cancer stem cells—perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 66(19):9339–9344. doi: 10.1158/0008-5472.CAN-06-3126 CrossRefPubMedGoogle Scholar
  8. 8.
    Lobo NA, Shimono Y, Qian D, Clarke MF (2007) The biology of cancer stem cells. Annu Rev Cell Dev Biol 23:675–699. doi: 10.1146/annurev.cellbio.22.010305.104154 CrossRefPubMedGoogle Scholar
  9. 9.
    Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van den Brink S, Van Houdt WJ, Pronk A, Van Gorp J, Siersema PD, Clevers H (2011) Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology 141(5):1762–1772. doi: 10.1053/j.gastro.2011.07.050 CrossRefGoogle Scholar
  10. 10.
    Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, Watanabe T, Kanai T, Sato T (2015) Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med 21(3):256–262. doi: 10.1038/nm.3802 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Isobe T, Hisamori S, Hogan DJ, Zabala M, Hendrickson DG, Dalerba P, Cai S, Scheeren F, Kuo AH, Sikandar SS, Lam JS, Qian D, Dirbas FM, Somlo G, Lao K, Brown PO, Clarke MF, Shimono Y (2014) miR-142 regulates the tumorigenicity of human breast cancer stem cells through the canonical WNT signaling pathway. elife 3. doi: 10.7554/eLife.01977
  12. 12.
    Fujii M, Shimokawa M, Date S, Takano A, Matano M, Nanki K, Ohta Y, Toshimitsu K, Nakazato Y, Kawasaki K, Uraoka T, Watanabe T, Kanai T, Sato T (2016) A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell 18(6):827–838. doi: 10.1016/j.stem.2016.04.003 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Yohei Shimono
    • 1
    Email author
  • Junko Mukohyama
    • 1
  • Taichi Isobe
    • 4
  • Darius M. Johnston
    • 3
  • Piero Dalerba
    • 2
  • Akira Suzuki
    • 1
  1. 1.Division of Molecular and Cellular BiologyKobe University Graduate School of MedicineKobeJapan
  2. 2.Department of Pathology and Cell BiologyColumbia UniversityNew YorkUSA
  3. 3.Department of Molecular and Cellular PhysiologyStanford UniversityStanfordUSA
  4. 4.Institute for Stem Cell Biology and Regenerative MedicineStanford UniversityStanfordUSA

Personalised recommendations