Skip to main content

ISH Probes Derived from BACs, Including Microwave Treatment for Better FISH Results

  • Protocol
Fluorescence In Situ Hybridization (FISH) — Application Guide

Besides the well-known applications of bacterial artificial chromosomes (BACs) in classical molecular genetics, BACs are also used for molecular cytogenetic studies. BACs, as well as other locus-specific probes like cDNA, plasmids, cosmids, fosmids, P1-clones or yeast artificial chromosomes (YACs), can be labeled with fluorochromes and applied in FISH experiments. Various applications are possible, like gene mapping, FISH banding, determination of chromosomal breakpoints, characterization of derivative chromosomes, studies of interphase architecture, and karyotypic evolution studies. Here the basic principle of hybridizing BACs in situ on chromosome preparations is outlined. Moreover, an overview of possible issues that can be studied using BACs as FISH probes is provided. Finally, a shortened and more efficient FISH protocol using microwave treatment which yields results that can be evaluated within a few hours is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Backx L, Van Esch H, Melotte C, Kosyakova N, Starke H, Frijns JP, Liehr T, Vermeesch JR (2007)Array painting using microdissected chromosomes to map chromosomal breakpoints. Cytogenet Genome Res 116:158–166

    Article  CAS  PubMed  Google Scholar 

  • Birren BW, Tachi-iri Y, Kim UJ, Nguyen M, Shizuya H, Korenberg JR, Simon MI (1996)A human chromosome 22 fosmid resource: mapping and analysis of 96 clones. Genomics 34:97–106

    Article  CAS  PubMed  Google Scholar 

  • Gisselsson D, Palsson E, Hoglund M, Domanski H, Mertens F, Pandis N, Sciot R, Dal Cin P, Bridge JA, Mandahl N (2002) Differentially amplified chromosome 12 sequences in low- and high-grade osteosarcoma. Genes Chromosomes Cancer 33:133–140

    Article  CAS  PubMed  Google Scholar 

  • Liehr T (2006) Application of YACs in fluorescence in situ hybridization (FISH). In: Alesandair M (ed) Methods in molecular biology YAC protocols, 2nd edn. Humana, Totowa, NJ, pp. 175–186, ISBN 1–58829–612–1

    Google Scholar 

  • Liehr T, Weise A, Heller A, Starke H, Mrasek K, Kuechler A, Weier HU, Claussen U (2002)Multicolor chromosome banding (MCB) with YAC/BAC-based probes and region-specific microdissection DNA libraries. Cytogenet Genome Res 97:43–50

    Article  CAS  PubMed  Google Scholar 

  • Liehr T, Starke H, Senger G, Melotte C, Weise A, Vermeesch JR (2006) Overrepresentation of small supernumerary marker chromosomes (sSMC) from chromosome 6 origin in cases with multiple sSMC. Am J Med Genet A 140:46–51

    PubMed  Google Scholar 

  • Mark H, Wyandt H, Huang X, Milunsky J (2005) Delineation of a supernumerary marker chromosome utilizing a multimodal approach of G-banding, fluorescent in situ hybridization, confirmatory P1 artificial chromosome fluorescent in situ hybridization, and high-resolution comparative genomic hybridization. Clin Genet 68:146–151

    Article  CAS  PubMed  Google Scholar 

  • Michels-Rautenstrauss KG, Mardin C Y, Budde WM, Liehr T, Polansky J, Nguyen T, Timmerman V, Van Broeckhoven C, Naumann GO, Pfeiffer RA, Rautenstrauss BW (1998) Juvenile open angle glaucoma: fine mapping of the TIGR gene to 1q24.3-q25.2 and mutation analysis. Hum Genet 102:103–106

    Article  CAS  PubMed  Google Scholar 

  • Nogami M, Nogami O, Kagotani K, Okumura M, Taguchi H, Ikemura T, Okumura K (2000)Intranuclear arrangement of human chromosome 12 correlates to large-scale replication domains. Chromosoma 108:514–522

    Article  CAS  PubMed  Google Scholar 

  • Pietrzak J, Mrasek K, Obersztyn E, Stankiewicz P, Kosyakova N, Weise A, Cheung SW, Cai WW, von Eggeling F, Mazurczak T, Bocian E, Liehr T (2007) Molecular cytogenetic characterization of eight small supernumerary marker chromosomes originating from chromosomes 2, 4,8, 18, and 21 in three patients. J Appl Genet 48:167–175

    PubMed  Google Scholar 

  • Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high sensitivity, fluorescence hybridization. Proc Natl Acad Sci USA 83:2934–2938

    Article  CAS  PubMed  Google Scholar 

  • Rubtsov N, Senger G, Kuzcera H, Neumann A, Kelbova C, Junker K, Beensen V, Claussen U (1996) Interstitial deletion of chromosome 6q: precise definition of the breakpoints by micro-dissection, DNA amplification, and reverse painting. Hum Genet 97:705–709

    Article  CAS  PubMed  Google Scholar 

  • Schmidt S, Claussen U, Liehr T, Weise A (2005) Evolution versus constitution: differences in chromosomal inversion. Hum Genet 117:213–219

    Article  CAS  PubMed  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya D, Matsumoto A, Covert SF, Bronson CR, Taga M (2002) Physical mapping of plasmid and cosmid clones in filamentous fungi by fiber-FISH. Fungal Genet Biol 37:22–28

    Article  CAS  PubMed  Google Scholar 

  • von Deimling F, Scharf JM, Liehr T, Rothe M, Kelter AR, Albers P, Dietrich WF, Kunkel LM, Wernert N, Wirth B (1999) Human and mouse RAD17 genes: Identification, localization, genomic structure and histological expression pattern in normal testis and seminoma. Hum Genet 105:17–27

    Article  Google Scholar 

  • Weise A, Harbarth P, Claussen U, Liehr T (2003) Fluorescence in situ hybridization (FISH) on human chromosomes using photoprobe biotin-labeled probes. J Histochem Cytochem 51:549–551

    CAS  PubMed  Google Scholar 

  • Weise A, Starke H, Mrasek K, Claussen U, Liehr T (2005a) New insights into the evolution of chromosome 1. Cytogenet Genome Res 108:217–222

    Article  CAS  Google Scholar 

  • Weise A, Liehr T, Claussen U, Halbhuber K-J (2005b) Increased efficiency of fluorescence in situ hybridization (FISH) using the microwave. J Histochem Cytochem 53:1301–1303

    Article  CAS  Google Scholar 

  • Weise A, Gross M, Mrasek K, Mkrtchyan H, Horsthemke B, Jonsrud C, von Eggeling F, Hinreiner S, Witthuhn V, Claussen U, Liehr T (2008) Parental-origin-determination FISH (pod-FISH) distinguishes homologous human chromosomes on a single cell level. Int J Mol Med 21:189–200

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Acknowledgments Supported in part by the Evangelische Studienwerk e.V. Villigst, IZKF Jena (Start-up S16, TP 3.7), Friedrich Schiller University Jena, TMWFK (B307–04004), Stiftung Leukämie and Stefan-Morsch-Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Weise .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Weise, A. et al. (2009). ISH Probes Derived from BACs, Including Microwave Treatment for Better FISH Results. In: Liehr, T. (eds) Fluorescence In Situ Hybridization (FISH) — Application Guide. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70581-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70581-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70580-2

  • Online ISBN: 978-3-540-70581-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics