Skip to main content

Post-Translational Modif ications of Proteins

  • Protocol
Molecular Biomethods Handbook

Part of the book series: Springer Protocols Handbooks ((SPH))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Graves DJ, Martin BL, Wang JH (1994) Co- and posttranslational modification of proteins: chemical principles and biological effects. Oxford University Press, Oxford

    Google Scholar 

  2. Walsh CT (2006) Posttranslational modification of proteins: expanding nature's inventory. Roberts and Company Publishers, Greenwood Village, CO

    Google Scholar 

  3. Miklos GLG, Maleszka R (2001) Protein functions and biological contexts. Proteomics 1:169–178

    PubMed  CAS  Google Scholar 

  4. Gooley AA, Packer NH (1997) The importance of protein co- and posttranslational modifications in proteome projects. In: Proteome research: new frontiers in functional genomics. Springer-Verlag Berlin Heidelberg New York, pp. 65–91

    Google Scholar 

  5. Mitoma J, Bao X, Petryanik B, Schaerli P, Gauguet J-M, Yu SY, Kawashima H, Saito H, Ohtsubo K, Marth JD, Khoo K-H, von Andrian UH, Lowe, J. B. and Fukuda, M. (2007) Critical functions of N-glycans in L-selectin-mediated lymphocyte homing and recruitment. Nature Immunol 8:409–418

    CAS  Google Scholar 

  6. Cohen P (2000) The regulation of protein function by multisite phosphorylation: a 25 year update. Trends Biochem Sci 25:596–601

    PubMed  CAS  Google Scholar 

  7. Ciechanover A (2006) Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Exp Biol Med 7:1197–1211

    Google Scholar 

  8. Boeckmann B, Blatter M-C, Famiglietti L, Hinz U, Lane L, Rochert B, Bairoch A (2005) Protein variety and functional diversity: Swiss-Prot annotation in its biological context. C. R. Biologies 328:882–899

    PubMed  CAS  Google Scholar 

  9. Williams KL, Hochstrasser DF (1997) Introduction to the proteome. In: Proteome research: new frontiers in functional genomics. Springer-Verlag Berlin Heidelberg New York, pp. 1–12

    Google Scholar 

  10. Godovac-Zimmermann J, Brown LR (2001) Perspectives for mass spectrometry and functional proteomics. Mass Spectrometry Rev 20:1–57

    CAS  Google Scholar 

  11. Mann M, Jensen ON (2003) Proteomic analysis of post-translational modifications. Nat Biotechnol 21:255–261

    PubMed  CAS  Google Scholar 

  12. Zhu K, Zhao J, Miller FR, Barder TJ, Lubman DM (2005) Protein pI shifts due to posttranslational modifications in the separation and characterization of proteins. Anal Chem 77:2745–2755

    PubMed  CAS  Google Scholar 

  13. Wu J, Lenchik NJ, Pabst MJ, Solomon SS, Shull J, Gerling IC (2005) Functional characterization of two-dimensional gel-separated proteins using sequential staining. Electrophoresis 26:225–237

    PubMed  CAS  Google Scholar 

  14. Hamdan M, Galvani M, Righetti PG (2001) Monitoring 2-D gel induced modifications of proteins by MALDI-TOF mass spectrometry. Mass Spectrometry Rev 20:121–141

    CAS  Google Scholar 

  15. Schroeder MJ, Webb DJ, Shabanowitz J, Horwitz AF, Hunt DF (2005) Methods for the detection of paxillin post-translational modifications and interacting proteins by mass spectrometry. J. Proteome Res 4:1832–1841

    PubMed  CAS  Google Scholar 

  16. Nilsson CL, Davidsson P (2000) New separation tools for comprehensive studies of protein expression by mass spectrometry. Mass Spectrometry Rev 19:390–397

    CAS  Google Scholar 

  17. James P (2001) Proteome research: mass spectrometry. Springer-Verlag Berlin, Heidelberg

    Google Scholar 

  18. Farriol-Mathis N, Garavelli JS, Boeckmann B, Duvaud S, Gasteiger E, Gateau A, Veuthey AL, Bairoch A (2004) Annotation of post-translational modifications in the Swiss-Prot knowledge base. Proteomics 4:1527–1550

    Google Scholar 

  19. Blom N, Sicheritz-Pontén T, Gupta R, Gammeltoft S, Brunak S (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4:1633–1649

    PubMed  CAS  Google Scholar 

  20. Rune M (2006) Mass spectrometry data analysis in proteomics. Humana Press, Totowa

    Google Scholar 

  21. Creighton TE (1984) Disulfide bond formation in proteins. In: Wold, F, Moldave, K (eds) Methods in Enzymology, vol. 107. Academic, San Diego, CA, pp. 305–329

    Google Scholar 

  22. Smith DL, Zhou Z (1990) Strategies for locating disulfide bonds in proteins. In: Methods in Enzymology, vol. 193. McCloskey JA (ed) Academic, New York, pp. 374–389

    Google Scholar 

  23. Hirayama K, Akashi S (1994) Assignment of disulfide bonds in proteins. In: Matsuo, T, Caprioli RM, Gross ML, Seyama Y (eds) Biological mass spectrometry: present and future, Wiley, New York, pp. 299–312

    Google Scholar 

  24. Wu J, (2008) In: Kannicht C (ed) Methods in molecular biology, vol. 446: Posttranslational modifications of proteins Humana, Totowa, NJ, pp. 1–20

    Google Scholar 

  25. Wu J, Gage DA, Watson, JT (1996) A strategy to locate cysteine residues in proteins by specific chemical cleavage followed by matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry. Anal Biochem 235:161–174

    PubMed  CAS  Google Scholar 

  26. Reinders J, Lewandrowski U, Möbius J, Wagner Y, Sickmann A (2004) Challenges in mass spectrometry-based proteomics. Proteomics 4:3686–3703

    PubMed  CAS  Google Scholar 

  27. Weise C, Lenz C, (2008) Identification of Protein Phosphorylation Sites by Advanced LC-ESI_MS/MS Methods, In: Kannicht C (ed) Methods in molecular biology, vol. 446, Posttranslational modifications of proteins Humana, Totowa, NJ, pp. 33–46

    Google Scholar 

  28. Steen H, Jebanathirajah JH, Rush J, Morrice N, and Kirschner, MW (2006) Myths, facts, and the consequences for qualitative and quantitative measurements. Molecular & Cellular Proteomics 5:172–181

    CAS  Google Scholar 

  29. see ref 27

    Google Scholar 

  30. see ref 14

    Google Scholar 

  31. Steinberg TH, Agnew BJ, Gee K.R, Leung W.-Y, Goodman T, Schulenberg B, Hendrickson J, Beechem JM, Haugland, RP, Patton WF (2003) Global quantitative phosphoprotein analysis using multiplexed proteomics technology. Proteomics 3:1128–1144

    PubMed  CAS  Google Scholar 

  32. Monigatti F, Hekking B, Steen H (2006) Protein sulfation analysis – A primer. Biochim Biophys Acta 1764:1904–1913

    PubMed  CAS  Google Scholar 

  33. Bundgaard JR, Sen JW, Johnsen AH, Rehfeld JF (2008) Analysis of tyrosine-O-sulfation. In: Kannicht C (ed) Methods in molecular biology, vol. 446, Posttranslational Modifications of Proteins. Humana, Totowa, NJ, pp. 47–66

    Google Scholar 

  34. Walsh CT (2006) Protein Glycosylation In: Posttranslational Modifications of Proteins: expanding nature's inventory, Roberts and Company Publishers, Greenwood Village, CO, pp. 281–316

    Google Scholar 

  35. Mechref YH, Novotny MV (2002) Structural investigations of glycoconjugates at high sensitivity. Chem Rev 102: 321–369

    PubMed  CAS  Google Scholar 

  36. Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3:97–130

    PubMed  CAS  Google Scholar 

  37. Varki A (2006) Nothing in glycobiology makes sense, except in the light of evolution. Cell 126:841–845

    PubMed  CAS  Google Scholar 

  38. Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–664

    PubMed  CAS  Google Scholar 

  39. Miller I, Crawford J, Gianazza E (2006) Protein stains for proteomic applications: which, when, why? Proteomics 6:5385–5408

    PubMed  CAS  Google Scholar 

  40. Hart C, Schulenberg B, Steinberg TH, Leung WY, Patton WF (2003) Detection of glycoproteins in polyacrylamide gels and on electroblots using Pro-Q Emerald 488 dye, a fluorescent periodate Schiff-base stain. Electrophoresis 24:588–598

    PubMed  CAS  Google Scholar 

  41. Wu J, Lenchik NJ, Pabst MJ, Solomon SS, Shull J, Gerling IC (2005) Functional characterization of two-dimensional gel-separated proteins using sequential staining. Electrophoresis 26:225–237

    PubMed  CAS  Google Scholar 

  42. Löster K, Kannicht C (2008) 2-Dimensional-Electrophoresis – detection of glyco-sylation and influence on spot pattern, In: Kannicht C (ed) Methods in molecular biology, vol. 446, Posttranslational modifications of proteins. Humana, Totowa, NJ, pp. 199–214.

    Google Scholar 

  43. Davies MJ, Hounsell EF (1998) HPLC and HPAEC of oligosaccharides and glycopeptides. In: Hounsell EF (ed) Methods in molecular biology, glycoanalysis protocols Humana Press, Totowa, NJ, pp. 79–100

    Google Scholar 

  44. Anumula KR (2006) Advances in fluorescence derivatization methods for high-performance liquid chromatographic analysis of glycoprotein carbohydrates. Anal Biochem. 350:1–23

    PubMed  CAS  Google Scholar 

  45. Saddic NG, Dhume ST, Anumula KR (2008) Carbohydrate composition analysis of glycoproteins by HPLC using highly flourescent anthranilic acid (AA) tag. In: Kannicht C (ed) Methods in molecular biology, vol. 446: Posttranslational modifications of proteins. Humana, Totowa, NJ, pp. 1215–1230

    Google Scholar 

  46. Geyer H, Geyer R (2006) Strategies for analysis of glycoprotein glycosylation. Biochim Biophys Acta 1764:1853–1869

    PubMed  CAS  Google Scholar 

  47. Hounsell EF (1998) Glycoanalysis Protocols, 2nd edn. Humana Press, Totowa, NJ.

    Google Scholar 

  48. Harvey DH (2001) Identification of protein-bound carbohydrates by mass spec-trometry. Proteomics 1:311–328

    PubMed  CAS  Google Scholar 

  49. Medzihradszky KF (2008) Characterization of site-specific N-glycosylation, In: Kannicht C (ed) Methods in molecular biology, vol. 446: Posttranslational modifications of proteins. Humana, Totowa, NJ, pp. 1293–1316

    Google Scholar 

  50. Trombetta ES (2003) The contribution of N-glycans and their processing in the endoplasmic reticulum to glycoprotein biosynthesis. Glycobiology 13:77R–91R

    PubMed  CAS  Google Scholar 

  51. Townsend RR, Hardy MR (1991) Analysis of glycoprotein oligosaccharides using high-pH anion exchange chromatography. Glycobiology 2:139–147

    Google Scholar 

  52. Kumar HP, Hague C, Haley T, Starr CM, Besman MJ, Lundblad RL, Baker D (1996) Elucidation of N-linked oligosaccharide structures of recombinant human factor VIII using fluorophore-assisted carbohydrate electrophoresis. Biotechnol Appl Biochem 24:207–216

    PubMed  Google Scholar 

  53. Kobata A (1994) Affinity chromatography with use of immobilized lectin columns. Biochem Soc Trans 22:360–364

    PubMed  CAS  Google Scholar 

  54. Kobata A (1979) Use of endo- and exoglycosidases for structural studies of glyco-conjugates. Anal Biochem 100:1–14

    PubMed  CAS  Google Scholar 

  55. Tyagarajan K, Forte JG, Townsend RR (1996) Exoglycosidase purity and linkage specificity: assessment using oligosaccharide substrates and high-pH anion-exchange chromatography with pulsed amperometric detection. Glycobiology 6:83–93

    PubMed  CAS  Google Scholar 

  56. Fu D, Chen L, O'Neill RA (1994) A detailed structural characterization of ribo-nuclease B oligosaccharides by 1H NMR spectroscopy and mass spectrometry. Carbohydr Res 261:173–186

    PubMed  CAS  Google Scholar 

  57. Kannicht C, Grunow D, Lucka L (2008) Enzymatic sequence analysis of N-Glycans by exoglycosidase cleavage and mass spectrometry – Detection of Lewis X structures. In: Kannicht C (ed) Methods in molecular biology, vol. 446, Posttranslational modifications of proteins. Humana, Totowa, NJ, pp. 255–266

    Google Scholar 

  58. Lucka L, Fernando M, Grunow D, Kannicht C, Horst AK, Nollau P, Wagener, C (2005) Identification of Lewisx structures of the cell adhesion molecule CEACAM1 from human granulocytes. Glycobiol 15:87–100

    CAS  Google Scholar 

  59. Van den Steen P, Rudd PM, Dwek, RA, Opdenakker G (1998) Concepts and principles of O-linked glycosylation. Crit Rev Biochem Mol Biol 33:151–208

    PubMed  Google Scholar 

  60. Hounsell EF, Davies MJ, and Renouf DV (1996) O-linked protein glycosylation structure and function. Glycoconj J 13:19–26.

    PubMed  CAS  Google Scholar 

  61. Julenius K, Mϕlgaard A, Gupta R, Brunak S (2005) Prediction, conservation analysis and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology 15:153–164

    PubMed  CAS  Google Scholar 

  62. see ref. 49

    Google Scholar 

  63. Calvete JJ, Sanz J (2008) Analysis of O-Glycosylation. In: Kannicht C (ed) Methods in Molecular Biology, vol. 446: Posttranslational modifications of proteins. Humana, Totowa, NJ, pp. 1281–1292

    Google Scholar 

  64. Mechref Y, Novotny MV (2002) Structural investigations of glycoconjugates at high sensitivity. Chem Rev 102:321–369

    PubMed  CAS  Google Scholar 

  65. Hanover JA (2001) Glycan-dependent signaling: O-linked N-acetylglucosamine. FASEB J. 15:1865–1876

    PubMed  CAS  Google Scholar 

  66. Khidekel N, Ficarro SB, Peters EC, Hsieh-Wilson LC (2004) Exploring the O-GlcNAc proteome: Direct identification of O-GlcNAc-modified proteins from the brain. Proc Natl Acad Sci 101:13132–13137

    PubMed  CAS  Google Scholar 

  67. see ref. 64

    Google Scholar 

  68. see ref. 66

    Google Scholar 

  69. Rudd PM, Mattu TS, Zitzmann N, Metha A, Colominas C, Hart E, Opdenakker G, Dwek RA (1999) Glycoproteins: Rapid sequencing technology for N-linked and GPI anchor glycans. Biotechnol Genet Eng Rev 16:1–21

    PubMed  CAS  Google Scholar 

  70. Rudd PM, Colominas C, Royle L, Murphy N, Hart E, Merry AH, Hebesteit HF, Dwek RA. (2001) A high-performance liquid chromatography based strategy for rapid sensitive sequencing of N-linked oligosaccharide modifications to proteins in sodium dodecyl sulphate polyacrylamide electrophoresis gel bands. Proteomics 1:285–294

    PubMed  CAS  Google Scholar 

  71. Vosseller K, Trinidad JC, Chalkley RJ, Specht CG, Thalhammer A, Lynn AJ, Snedecor JH, Guan S, Medzihradszky KF, Maltby DA, Schoepfer R, Burlingame AL (2006). O-linked N-acetylglucosamine proteomics of postsynaptic density preparations using lectin weak affinity chromatography (LWAC) and mass spec-trometry. Mol. Cell. Proteomics 5:923–934

    PubMed  CAS  Google Scholar 

  72. Ahrend M, Käberich A, Fergen M-T, Schmitz B (2008) Immunochemical methods for the rapid screening of the O-glycosidically linked N-acetylglucosamine modification of proteins. In: Kannicht C (ed) Methods in molecular biology, vol. 446, Posttranslational modifications of proteins. Humana, Totowa, NJ, pp. 267–280

    Google Scholar 

  73. Comer FI, Vosseller K, Wells L, Accavitti MA, Hart GW (2001). Characterization of a mouse monoclonal antibody specific for O-linked N-acetylglucosamine. Anal Biochem 293:169–177

    PubMed  CAS  Google Scholar 

  74. Walsh CT (2006) Protein Lipidation. In: Posttranslational modifications of proteins: expanding nature's inventory. Roberts and Company Publishers, Greenwood Village, CO, pp. 171–202

    Google Scholar 

  75. Orlean P, Menon AK (2007) GPI anchoring of protein in yeast and mammalian cells or: how we learned to stop worrying and love glycophospholipids. J Lipid Res. 48:993–1011

    PubMed  CAS  Google Scholar 

  76. Elortza F, Nuhse TS, Foster LJ, Stensballe A, Peck SC, Jensen ON (2003) Proteomic analysis of glycosylphosphatidylinositol-anchored membrane proteins. Mol Cell Proteomics 2:1261–1270

    PubMed  CAS  Google Scholar 

  77. Azzouz N, Gerold P, Schwarz RT. (2008) Metabolic labeling and structural analysis of glycosylphosphatidylinositols from parasitic protozoa. In: Kannicht C (ed) Methods in molecular biology, vol.446, Posttranslational modifications of proteins Humana, Totowa, NJ, pp. 183–198

    Google Scholar 

  78. see ref. 74

    Google Scholar 

  79. Bijlmakers MJ, Marsh M (2003) The on-off story of protein palmitoylation. Trends Cell Biol 13, 32–42

    PubMed  CAS  Google Scholar 

  80. Glomset JA, Gelb MH, Farnsworth CC (1990) Prenyl proteins in eukaryotic cells: A new type of membrane anchor. Trends Biochem. Sci 15:139–142

    PubMed  CAS  Google Scholar 

  81. see ref 1

    Google Scholar 

  82. Lottspeich F, Zorbas H (1998) Lipidanalytik in Bioanalytik Spektrum Akademischer Verlag GmBH Heidelberg Berlin, pp. 537–568

    Google Scholar 

  83. Veit M, Ponimaskin E, Schmidt MFG (2008) Analysis of S-Acylation of Proteins. In: Kannicht C (ed) Methods in molecular biology, vol. 446, Posttranslational Modifications of Proteins Humana, Totowa, NJ, pp. 163–183

    Google Scholar 

  84. Walsh CT, (2006) Protein methylation and protein N-acetylation, in Posttranslational modifications of proteins: expanding nature's inventory, Roberts and Company Publishers, Greenwood Village, CO, pp. 121–170

    Google Scholar 

  85. Ermler U, Grabarse W, Shima, S, Goubeaud M, Thauer RK (1997) Crystal structure of methyl-coenzyme M reductase: The key enzyme of biological methane formation. Science 278:1457–1462

    PubMed  CAS  Google Scholar 

  86. Arnold RJ, Running W, Reilly JP (2008) Analysis of methylation, acetylation and other modifications in bacterial ribosomal proteins. In: Kannicht C (ed) Methods in molecular biology, vol. 446, Posttranslational modifications of proteins. Humana, Totowa, NJ, pp. 151–162

    Google Scholar 

  87. Mukhapadhyay D, Riezman H (2007) Proeasome-independent functions of ubiqui-tin in endocytosis and signaling. Science 315:201–205

    Google Scholar 

  88. Denison C, Kirkpatrick DS, Gygi SP (2005) Proteomic insights into ubiquitin and ubiquitin-like proteins. Current Opinion Chem Biol 9:69–75

    CAS  Google Scholar 

  89. Parker CE, Warren MRE, Mocanu V, Greer SF, Borchers CH (2008) Mass spec-trometric determination of protein ubiquitination, In: Kannicht C (ed) Methods in molecular biology, vol. 446, Posttranslational modifications of proteins. Humana, Totowa, NJ, pp. 109–130.

    Google Scholar 

  90. Kim KI, Baek SH (2006) SUMOylation code in cancer development and metastasis. Mol Cells 22:247–253

    PubMed  CAS  Google Scholar 

  91. see ref. 88

    Google Scholar 

  92. Pichler A (2008) Analysis of SUMOylation, In: Kannicht C (ed) Methods in molecular biology, vol. 446, Posttranslational modifications of proteins. Humana, Totowa, NJ, pp. 131–138

    Google Scholar 

  93. Pichler A, Knipscheer P, Saitoh H, Sixma TK, Melchior F (2004) The RanBP2 SUMO E3 ligase is neither HECT- nor RING-type. Nat Struct Mol Biol 11: 984–991

    PubMed  CAS  Google Scholar 

  94. Pedrioli PG, Raught B, Zhang XD, Rogers R, Aitchison J, Matunis M, Aebersold R (2006) Automated identification of SUMOylation sites using mass spectrometry and SUMmOn pattern recognition software. Nat Methods 3:533–539

    PubMed  CAS  Google Scholar 

  95. Loeb KR, Haas AL (1992) The interferon-inducible 15-kDa ubiquitin homolog conjugates to intracellular proteins. J Biol Chem 267:7806–7813

    PubMed  CAS  Google Scholar 

  96. Staub O (2004) Ubiquitylation and isgylation: overlapping enzymatic cascades do the job. Sci STKE 245:pe43

    Google Scholar 

  97. Giannakopoulos NV, Luo J-K, Papov V, Zou W, Lenschow DJ, Jacobs BS, Borden EC, Li J, Virgin HW, Zhang D-E (2005) Proteomic identification of proteins conjugated to ISG15 in mouse and human cells. Biochem Biophys Res Commun 336:496–506

    PubMed  CAS  Google Scholar 

  98. Takeuchi T, Yokosawa H (2008) Detection and analysis of protein ISGylation In: Kannicht C (ed) Methods in molecular biology, vol. 446, Posttranslational modifications of proteins. Humana, Totowa, NJ, pp. 139–150

    Google Scholar 

  99. Walsh CT (2006) Postranslational hydroxylation of proteins, in Posttranslational Modifications of Proteins: expanding nature's inventory, Roberts and Company Publishers, Greenwood Village, CO, pp. 331–348

    Google Scholar 

  100. Castellino FJ, Ploplis VA, Zhang L (2008) Gamma-Glutamate and β-Hydrosyaspartate. In: Kannicht C (ed) Methods in molecular biology vol. 446, Posttranslational modifications of proteins Humana, Totowa, NJ, pp. 85–94

    Google Scholar 

  101. Furie B, Bouchard BA, Furie BC (1999) Vitamin K-dependent biosynthesis of γ-carboxyglutamic acid. Blood 93: 1798–1808

    PubMed  CAS  Google Scholar 

  102. Walsh CT (2006) Protein carboxylation and amidation. In: Posttranslational modifications of proteins: expanding nature's inventory, Roberts and Company Publishers, Greenwood Village, CO, pp. 435–460

    Google Scholar 

  103. Bradbury AF, Smyth DG (1991) Peptide amidation. Trends Biochem Sci 3: 112–115

    Google Scholar 

  104. Eipper BA, Milgram SL, Husten EJ, Yun H, Mains RE (1993) Peptidylglycine (alpha)-amidating monooxygenase: A multifunctional protein with catalytic, processing, and routing domains. Protein Sci 4:489–497

    Google Scholar 

  105. Mueller GP, Driscoll WJ (2008) α-amidated peptides: approaches for analysis. In: Kannicht C (ed) Methods in molecular biology, vol. 446, Posttranslational modifications of proteins Humana, Totowa, NJ, pp. 167–184

    Google Scholar 

  106. Appel RD, Bairoch A (2004) Post-translational modifications: a challenge for proteomics and bioinformatics. Proteomics 6:1525–1526

    Google Scholar 

  107. Creasy DM, Cottrell JS (2004) Unimod: Protein modifications for mass spec-trometry. Proteomics 6:1534–1536

    Google Scholar 

  108. Farriol-Mathis N, Garavelli JS, Boeckmann B, Duvaud S, Gasteiger E, Gateau A, Veuthey AL, Bairoch A (2004) Annotation of post-translational modifications in the Swiss-Prot knowledge base. Proteomics. 6, 1537–1550

    Google Scholar 

  109. Boeckmann B, Blatter M-C, Famiglietti L, Hinz U, Lane L, Roechert B, Bairoch, A (2005) C.R. Biologies 328: 882–899

    PubMed  CAS  Google Scholar 

  110. Ivanisenko VA, Afonnikov DA, Kolchanov NA (2008) Web-based computational tools for the prediction and analysis of posttranslational modifications of proteins. In: Kannicht C (ed) Methods in molecular biology, vol. 446, Posttranslational modifications of proteins Humana, Totowa, NJ, pp. 363–384.

    Google Scholar 

  111. Johnson SA, Hunter T (2004) Phosphoproteomics finds its timing. Nature Biotechnology 22: 1093–1094

    PubMed  CAS  Google Scholar 

  112. Morandell S, Stasyk T, Grosstessner-Hain K, Roitinger E, Mechtler K, Bonn GK, Huber LA (2006) Phosphoproteomics strategies for the functional analysis of signal transduction. Proteomics 6:4047–4056

    PubMed  CAS  Google Scholar 

  113. Blagoev B, Ong S-E, Kratchmarova I, Mann M (2004) Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nature Biotechnology 22:1139–1145

    PubMed  CAS  Google Scholar 

  114. Zahedi RP, Begonia AJ, Gambaryan S, Sickmann A (2006) Phosphoproteomics of human platelets: A quest for novel activation pathways. Biochim Biophys Acta 1764:1963–1976

    PubMed  CAS  Google Scholar 

  115. Gesslbauer B, Kungl AJ (2006) Glycomic approaches toward drug development: therapeutically exploring the glycosaminoglycanome. Curr Opin Mol Ther. 8: 521–528

    PubMed  CAS  Google Scholar 

  116. Miyamoto S (2006) Clinical applications of glycomic approaches for the detection of cancer and other diseases. Curr Opin Mol Ther. 8:507–513

    PubMed  CAS  Google Scholar 

  117. Sinclair AM, Elliott S (2005) Glycoengineering: the effect of glycosylation on the properties of therapeutic proteins. J Pharm Sci 94:1626–1635

    PubMed  CAS  Google Scholar 

  118. Gregoriadis G, Jain S, Papaioannou I, Laing P (2005) Improving the therapeutic efficacy of peptides and proteins: a role for polysialic acids. Int J Pharm 300:125– 130

    PubMed  CAS  Google Scholar 

  119. Walsh G, Jefferis R (2006) Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 24:1241–1252

    PubMed  CAS  Google Scholar 

  120. James DC, Freedman RB, Hoare M, Ogonah OW, Rooney BC, Larionov OA, Dobrovolsky VN, Lagutin OV, Jenkins N (1995) N-glycosylation of recombinant human interferon-gamma produced in different animal expression systems. Nature Biotechnology 13:592–596

    CAS  Google Scholar 

  121. James DC, Goldman MH, Hoare M, Jenkins N, Oliver RW, Green BN, Freedman RB (1996) Posttranslational processing of recombinant human interferon-gamma in animal expression systems. Protein Sci 5:331–340

    PubMed  CAS  Google Scholar 

  122. Gawlitzek M, Valley U, Wagner R (1998) Ammonium ion and glucosamine dependent increases of oligosaccharide complexity in recombinant glycoproteins secreted from cultivated BHK-21 cells. Biotechnol Bioeng 57:518–528

    PubMed  CAS  Google Scholar 

  123. Bollati-Fogolin M, Forno G, Nimtz M, Conradt HS, Etcheverrigaray M, Kratie R (2005) Temperature reduction in cultures of hGM-CSF-expressing CHO cells: effect on productivity and product quality. Biotechnol Prog 21:17–21

    PubMed  CAS  Google Scholar 

  124. Dhume ST, Saddic GN, Anumula KR (2008) Monitoring glycosylation of therapeutic glycoproteins for consistency by HPLC using highly fluorescent anthranilic acid (AA) tag. In: Kannicht C (ed) Methods in molecular biology, vol. 446, Posttranslational modifications of proteins Humana, Totowa, NJ, pp. 317–332

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kannicht, C., Fuchs, B. (2008). Post-Translational Modif ications of Proteins. In: Walker, J.M., Rapley, R. (eds) Molecular Biomethods Handbook. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1007/978-1-60327-375-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-375-6_28

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-370-1

  • Online ISBN: 978-1-60327-375-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics