Skip to main content

Identification of Glycoproteins on Nitrocellulose Membranes Using Lectin Blotting

  • Protocol
The Protein Protocols Handbook

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Glycoproteins result from the covalent association of carbohydrate moieties (glycans) with proteins. The enzymatic glycosylation of proteins is a common and complex form of posttranslational modification. The precise roles played by the carbohydrate moieties of glycoproteins are beginning to be understood (13). It has been established that glycans perform important biological roles including: stabilization of the protein structure, protection from degradation, control of protein solubility, control of protein transport in cells, and control of protein half-life in blood. They also mediate the interactions with other macromolecules, and the recognition and association with viruses, enzymes, and lectins (46).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Varki, A. (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3, 97–130.

    Article  PubMed  CAS  Google Scholar 

  2. Turner, G. A. (1992) N-glycosylation of serum proteins in disease and its investigation using lectins. Clin. Chim. Acta 208, 149–171.

    Article  PubMed  CAS  Google Scholar 

  3. Montreuil, J., Bouquelet, S., Debray, H., Fournet, B., Spik, G., and Strecker, G. (1986) Glycoproteins in Carbohydrate Analysis: A Practical Approach (Chaplin, M. F. and Kennedy, J. F., eds.), Academic, Oxford, UK, pp. 143–204.

    Google Scholar 

  4. Baenziger, J. U. (1984) The oligosaccharides of plasma glycoproteins: synthesis, structure, and function in The Plasma Proteins, vol. 4 (Putnam, F. W., ed.), Academic, New York, pp. 272–315.

    Google Scholar 

  5. Rademacher, T. W., Parekh, R. B., and Dwek, R. A. (1988) Glycobiology. Annu. Rev. Biochem. 57, 785–838.

    Article  PubMed  CAS  Google Scholar 

  6. Berger, E. G., Buddecke, E., Kamerling, J. P., Kobata, A., Paulson, J. C., and Vliegenthart, J. F. G. (1982) Structure, biosynthesis and functions of glycoprotein glycans. Experimenta 38, 1129–1158.

    Article  CAS  Google Scholar 

  7. Lundy, F. T. and Wisdom, G. B. (1992) The determination of asialoglycoforms of serum glycoproteins by lectin blotting with ricinus communis agglutinin. Clin. Chim. Acta 205, 187–195.

    Article  PubMed  CAS  Google Scholar 

  8. Thompson, S. and Turner, G. A. (1987) Elevated levels of abnormally-fucosylated haptoglobins in cancer sera. Br. J. Cancer 56, 605–610.

    Article  PubMed  CAS  Google Scholar 

  9. Stibler, H. and Borg, S. (1981) Evidence of a reduced sialic acid content in serum transferrin in male alcoholics. Alcohol. Clin. Exp. Res. 5, 545–549.

    Article  PubMed  CAS  Google Scholar 

  10. Clamp, J. R. (1984) The oligosaccharides of plasma protein in The Plasma Proteins, vol. 2 (Putnam, F. W., ed.), Academic, New York, pp. 163–211.

    Google Scholar 

  11. Lis, H. and Sharon, N. (1986) Lectins as molecules and as tools. Annu. Rev. Biochem. 55, 35–67.

    Article  PubMed  CAS  Google Scholar 

  12. Goldstein, I. J. and Hayes, C. E. (1978) The lectins: carbohydrate binding proteins of plants and animals. Adv. Carbohydr. Chem. Biochem. 35, 127–340.

    Article  PubMed  CAS  Google Scholar 

  13. Goldstein, I. J. and Poretz, R. D. (1986) Isolation, physicochemical characterization, and carbohydrate-binding specificity of lectins, in The Lectins: Properties, Functions, and Applications in Biology and Medicine (Liener, I. E., Sharon, N., and Goldstein, I. J., eds.), Academic, Orlando, FL, pp. 35–247.

    Google Scholar 

  14. Osawa, T. and Tsuji, T. (1987) Fractionation and structural assessment of oligosaccharides and glycopeptides by use of immobilized lectins. Annu. Rev. Biochem. 56, 21–42.

    Article  PubMed  CAS  Google Scholar 

  15. Bhavanandan, V. P. and Katlic, A. W. (1979) The interaction of wheat germ agglutinin with sialoglycoproteins. The role of sialic acid. J. Biol. Chem. 254, 4000–4008.

    PubMed  CAS  Google Scholar 

  16. Debray, H., Decout, D., Strecker, G., Spik, G., and Montreuil, J. (1981) Specificity of twelve lectins towards oligosaccharides and glycopeptides related to N-glycosylproteins. Eur. J. Biochem. 117, 41–55.

    Article  PubMed  CAS  Google Scholar 

  17. Kaifu, R. and Osawa, T. (1976) Synthesis of O-β-D-galactopyranosyl-(l-4)-O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-(1-2)-n-mannose and its interaction with various lectins. Carbohydr. Res. 52, 179–185.

    Article  PubMed  CAS  Google Scholar 

  18. Animashaun, T. and Hughes, R. C. (1989) Bowringia milbraedii agglutinin. Specificity of binding to early processing intermediates of asparagine-linked oligosaccharide and use as a marker of endoplasmic reticulum glycoproteins. J. Biol. Chem. 264, 4657–4663.

    PubMed  CAS  Google Scholar 

  19. Haselbeck, A., Schickaneder, E., Von der Eltz, H., and Hosel, W. (1990) Structural characterization of glycoprotein carbohydrate chains by using digoxigenin-labeled lectins on blots. Anal. Biochem. 191, 25–30.

    Article  PubMed  CAS  Google Scholar 

  20. Sueyoshi, S., Tsuji, T., and Osawa, T. (1988) Carbohydrate binding specificities of five lectins that bind to O-glycosyl-linked carbohydrate chains. Quantitative analysis by frontal-affinity chromatography. Carbohydr. Res. 178, 213–224.

    Article  PubMed  CAS  Google Scholar 

  21. Cummings, R. D. and Kornfeld, S. (1982) Characterization of the structural determinants required for the high affinity interaction of asparagine-linked oligosaccharides with immobilized phaseolus vulgaris leukoagglutinating and erythroagglutinating lectins. J. Biol. Chem. 257, 11,230–11,234.

    PubMed  CAS  Google Scholar 

  22. Pereira, M. E. A. and Kabat, E. A. (1974) Blood group specificity of the lectin from lotus tetragonolobus. Annu. NY Acad. Sci. 334, 301–305.

    Article  Google Scholar 

  23. Debray, H. and Montreuil, J. (1989) Aleuria aurantia agglutinin. A new isolation procedure and further study of its specificity towards various glycopeptides and oligosaccharides. Carbohydr. Res. 185, 15–26.

    Article  PubMed  CAS  Google Scholar 

  24. Shibuya, N., Goldstein, I. J., Broekaert, W. F., Nsimba-Lubaki, M., Peeters, B., and Peumans, W. J. (1987) The elderberry (sambucus nigra 1.) bark lectin recognizes the Neu5Ac (α2-6) Gal/GalNAc sequence. J. Biol. Chem. 262, 1596–1601.

    PubMed  CAS  Google Scholar 

  25. Wang, W. C. and Cummings, R. D. (1988) The immobilized leukoagglutinin from the seeds of Maackia amurensis binds with high affinity to complex-type Asn-linked oligosaccharides containing terminal sialic acid-linked α-2,3 to penultimate galactose residues. J. Biol. Chem. 263, 4576–4585.

    PubMed  CAS  Google Scholar 

  26. Cohen, E., Roberts, S. C., Nordling, S., and Uhlenbruck, G. (1972) Specificity of limulus polyphemus agglutinins for erythrocyte receptor sites common to M and N antigenic determinants. Vox Sang. 23, 300–307.

    Article  PubMed  CAS  Google Scholar 

  27. Appel, R. D., Sanchez, J. C., Bairoch, A., Golaz, O., Miu, M., Vargas, J. R., and Hochstrasser, D. F. (1993) Swiss-2D PAGE: a database of two-dimensional gel electrophoresis images. Electrophoresis 14, 1232–1238.

    Article  PubMed  CAS  Google Scholar 

  28. Jadach, J. and Turner, G. A. (1993) An ultrasensitive technique for the analysis of glycoproteins using lecting blotting enhanced chemiluminescence. Anal. Biochem. 212, 293–295.

    Article  PubMed  CAS  Google Scholar 

  29. Gravel, P., Golaz, O., Walzer, C., Hochstrasser, D. F., Turler, H., and Balant, L. P. (1994) Analysis of glycoproteins separated by two-dimensional gel electrophoresis using lectin blotting revealed by chemiluminescence. Anal. Biochem. 221, 66–71.

    Article  PubMed  CAS  Google Scholar 

  30. Sanchez, J. C., Ravier, F., Pasquali, C., Frutiger, S., Bjellqvist, B., Hochstrasser, D. F., and Hughes, G. J. (1992) Improving the detection of proteins after transfer to polyvinylidene difluoride membranes. Electrophoresis 13, 715–717.

    Article  PubMed  CAS  Google Scholar 

  31. Becker, B., Salzburg, M., and Melkonian, M. (1993) Blot analysis of glycoconjugates using digoxigenin-labeled lectins: an optimized procedure. Biotechniques 15, 232–235.

    PubMed  CAS  Google Scholar 

  32. Garfin, D. E. and Bers, G. (1982) Basic aspects of protein blotting, in Protein Blotting (Baldo, B. A. and Tovey, E. R., eds.), Karger, Basel, Germany, pp. 5–42.

    Google Scholar 

  33. Durrant, I. (1990) Light-based detection of biomolecules. Nature 346, 297,298.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Gravel, P., Golaz, O. (1996). Identification of Glycoproteins on Nitrocellulose Membranes Using Lectin Blotting. In: Walker, J.M. (eds) The Protein Protocols Handbook. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1007/978-1-60327-259-9_97

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-259-9_97

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-338-2

  • Online ISBN: 978-1-60327-259-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics