Skip to main content

Glycoprotein Analysis

  • Protocol
Molecular Biomethods Handbook

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

In eukaryottc cells, one of the most important posttranslattonal modrficattons of proteins is the co valent addmon of carbohydrate We can consider two major types of modtf-icatron to ammo-acid residues. N-glycosylation of asparagine amme groups and O-glycosylatron of serme or threonme hydroxyl groups (1). N-linked oltgosaccharrdes can be divided mto three maJor classes, the complex type contaming N-acetyl- glucosamme, mannose, galactose, fucose, and stahc acid; the oligomannose type contaming N-acetylglucosamme and mannose only; and the hybrid type that has features common to both complex and olrgomannose chains (Fig. 1) All of these structures are synthesized by a common pathway that begins in the endoplasmtc rettculum (ER) with the assembly of a lipid-lmked donor molecule The preformed oltgosacchartde is transferred to protein cotranslationally in the lumen of the endoplasmlc retrculum and by a serves of glycosrdase (a-glucosrdase and a-mannosrdase)-trmnning reactions is modr- fied as the protein progresses through the ER and Golgi apparatus (2), The diversity of N+lmked ohgosacchartde structure is dictated by the accesstbtllty of these partially processed chains to Golgi resident glycosyltransferases, a group of enzymes able to add monosacchartdes to oltgosacchartdes directly from nucleottde sugar donors. Glycosyltransferases are specrfic for nucleotide sugar donor, anomertctty, glycosrdtc linkage between sugars, and acceptor substrates. Consequently, there are a number of different transferases and each cell, tissue, and species has a unique complement of enzymes that control oltgosaccharrde biosynthesis (3). O-linked ohgosacchartdes con- tain similar residues to N-glycans, but their synthesis has no requirement for en bloc addttton of carbohydrate to the polypepttde chain O-glycosylatron proceeds by glycosyltransferase-catalyzed, stepwtse addition of monosacchartdes to generate, as in thecase of mucm glycoprotems, a diverse number of branched oltgosaccharrdes (4,5) (see Fig. 2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen, H. J. and Krsailus, E C (1992) Glycoconjugates Composrtron, Structure and Function Marcel Dekker, New York

    Google Scholar 

  2. Kornfeld, R and Kornfeld, S (1985) Assembly of asparagine-lmked ohgosaccharrdes Annu Rev Blochem 54, 631–664

    Article  CAS  Google Scholar 

  3. Kleene, R and Berger, E G (1993) The molecular and cell btology of glycosyltransferases Blochlm Blophys Acta 1154,283–325

    CAS  Google Scholar 

  4. Can-away, K L and Hull, S R (1991) Cell surface mucm-type glycoprotems and mucmlike domains Glycobiology 1, 131–138

    Article  Google Scholar 

  5. Corfield, T (1992) Mucus glycoprotems, super glycoforms how to solve a stocky problem? GlycoconJugate J 9, 217–221

    Article  CAS  Google Scholar 

  6. Helemus, A (1994) How N-lmked ollgosaccharrdes affect glycoprotem folding in the endoplasmrc retrculum. Mel Biol Cell 5, 253–265

    Google Scholar 

  7. Varki, A (1993) Brologrcal roles of ohgosacchartdes—All of the theortes are correct Glycobzology 3, 97–130

    Article  CAS  Google Scholar 

  8. Kobata, A (1992) Structures and functrons of the sugar chains of glycoprotems Eur J Biochem 209,483–501

    Article  PubMed  CAS  Google Scholar 

  9. O’Shannessy, D J and Quarles, R H. (1987) Labeling of the ohgosaccharrde moretres of mnnunoglobulms J Immunol Methods 99, 153–161

    Article  PubMed  Google Scholar 

  10. Edge, A S, Faltynek, C R, Hof, L, Rerchert, L E, Jr, and Weber, P (1981) Deglycosylation of glycoprotems by trifluoromethanesulfonic acid Anal Biochem 118, 131–137.

    Article  PubMed  CAS  Google Scholar 

  11. Tretter, V, Altmann, F, and Marz, L (1991) Peptrde-N4-(N-acetyl-beta-glucosammyl) asparagine amldase-F cannot release glycans with fucose attached α-l → 3 to the aspar-agine-linked N-acetylglucosamme restdue Eur J Biochem 199, 647–652.

    Article  PubMed  CAS  Google Scholar 

  12. Tremble, R B and Tarentmo, A L (1991) Identrficatron of drstmct endoglycosrdase (Endo) actlvltles in Flavobactenum-mentngoseptlcum—Endo-Fl, Endo-F2, and Endo-F3—Endo-Fl and Endo-H hydrolyze only high mannose and hybrtd glycans J Biol Chem 266, 1646–1651

    Google Scholar 

  13. LIS, H and Sharon, N (1986) Lectms as molecules and as tools Annu Rev Biochem 55, 35–67

    Article  PubMed  CAS  Google Scholar 

  14. Kijimoto-Ochial, S, Katagm, Y U, and Ochlai, H (1985) Analysis of N-linked ohgosaccharlde chams of glycoprotems on mtrocellulose sheets using lectm-peroxldase reagents Anal Biochem 147, 222–229

    Article  Google Scholar 

  15. Cummings, R D (1994) Use of lectins in analysis of glycoconjugates Methods Enzymol 230,66–86

    Article  PubMed  CAS  Google Scholar 

  16. Tachlbana, H, Sekl, K, and Murakaml, H (1993) Identification of hybrid-type carbohydrate chains on the hght cham of human monoclonal antibody specific to lung adenocarcmoma Biochzm Biophys Acta 1182,257–263

    Google Scholar 

  17. Leonards, K S and Kutchal, H (1985) Coupling of Ca2+ transport to ATP hydrolysis by the Ca2+-ATPase of sarcoplasmlc reticulum potential role of the 53-kllodalton glycoprotem Biochemwy 24, 4876–4884

    Article  CAS  Google Scholar 

  18. Ogawa, H, Ueno, M, Uchlbon, H, Matsumoto, I, and Seno, N (1990) Direct carbohydrate analysis of glycoprotems electroblotted onto polyvmylldene dlfluorlde membrane from sodium dodecyl sulfate-polyacrylamlde gel Anal Biochem 190, 165–169

    Article  PubMed  CAS  Google Scholar 

  19. Weltzhandler, M, Kadlecek, D, Avdalovlc, N, Forte, J G, Chow, D, and Townsend, R R (1993) Monosaccharide and ollgosaccharlde analysis of proteins transferred to polyvmylldene fluoride membranes after sodium dodecyl sulfate-polyacrylamlde gel electrophoresis J Biol Chem 268,5121–5130

    Google Scholar 

  20. Takasakl, S, Mlzuochl, T, and Kobata, A (1982) Hydrazmo lysls of asparagine-lmked sugar chains to produce free ohgosaccharldes Methods Enzymol 83, 263–268

    Article  Google Scholar 

  21. Patel T, Bruce, J, Merry, A, Blgge, C, Wormald, M, Jaques, A, and Parekh, R (1993) Use of hydrazme to release in intact and unreduced form both N-lmked and O-linked ohgosaccharldes from glycoprotems Biochemzstry 32, 679–693

    Article  CAS  Google Scholar 

  22. Cooper, C A, Packer, N H, and Redmond, J W (1994) The ellmmatlon of Olmked glycans from glycoprotems under non-reducing condltlons GlycoconJugate J 11, 163–167

    Article  CAS  Google Scholar 

  23. Takahashl, N and Muramatsu, T (1992) Handbook of Endoglycoszdases and Glycoamtdases CRC, Florida

    Google Scholar 

  24. Yamashlta, K, Mlzuochl, T, and Kobata, A (1982) Analysis of ohgosaccharrdes by gel filtration Methods Enzymof 83, 105–126

    Article  Google Scholar 

  25. Kobata, A, Yamashlta, K, and Takasakl, S (1987) BioGel P-4 column chromatography of oligosaccharldes effective size of ollgosaccharldes expressed in glucose units Methods Enzymol 138, 84–94

    Article  PubMed  CAS  Google Scholar 

  26. Hase, S, Ikenaka, K, Mlkoshlba, K, and Ikenaka, T (1988) Analysis of tissue glycoprotem sugar chams by two dlmenslonal high-performance hquld chromatographlc mapping J Chromatog 434, 51–60

    Article  CAS  Google Scholar 

  27. Lee, Y C (1990) High-performance amon-exchange chromatography for carbohydrate analysis. Anal Biochem 189, 151–162

    Article  PubMed  CAS  Google Scholar 

  28. Townsend, R R and Hardy, M R (1991) Analysis of glycoprotein ollgosaccharldes using high-pH amon exchange chromatography Glycobzology 1, 139–147

    Article  CAS  Google Scholar 

  29. Merkle, R K and Cummings, R D (1987) Lectm affinity chromatography of glycopeptides Methods Enzymol 138, 232–259

    Article  PubMed  CAS  Google Scholar 

  30. Osawa, T and Tsuji, T (1987) Fractlonatlon and structural assessment of ollgosaccharldes and glycopeptldes by use of lmmoblltsed lectins Annu Rev Biochem 56, 21–42

    Article  PubMed  CAS  Google Scholar 

  31. Jackson, P (1990) The use of polyacrylamide-gel electrophoresls for the high-resolution separation of reducing saccharides labelled with the fluorophore 8-ammonaphthalene-1,3,6-tnsulphomcacid Biochem J 270,705–713

    PubMed  CAS  Google Scholar 

  32. Jackson, P (1991) Polyacrylamlde gel electrophorests of reducing saccharides labeled with the fluorophore 2-ammoacridone—subptcomolar detection using an rmaging system based on a cooled charge-coupled device Anal Biochem 196,238–244

    Article  PubMed  CAS  Google Scholar 

  33. Kenne, L and Stromberg, S (1990) A method for the microanalysis ofhexoses inglycoprotems Curb Res 198, 173–179

    Article  CAS  Google Scholar 

  34. Montreutl, J, Bouquelet, S., Debray, H, Fournet, B, Spik, G, and Strecker, G (1986) Glycoprotems, in Carbohydrate Analysis A Practical Approach (Chaplm, M F and Kennedy, J F, eds), IRL, Oxford, UK, pp 143–204

    Google Scholar 

  35. Dell, A, Khoo, K-H, Panico M, McDowell, R A, Ettenne, A T, Reason, A J, and Morris, H R (1993) FAB-MS and ES-MS of glycoprotems, in Glycobzology A Practzcal Approach (Fukuda, M and Kobata, A, eds), IRL, Oxford, UK, pp 187–222

    Google Scholar 

  36. Harvey, D J (1992) Theroleofmassspectrometryinglycobiology GlycoconJugate J 9, 1–12

    Article  CAS  Google Scholar 

  37. Medzthradszky, K F, Maltby, D A, Hall, S C, Settmeri, C A, and Burlingame, A L (1994) Characterlsatlon of protem N-glycosylatton by reversed-phase mtcrobore liquid chromatography/electrospray mass spectrometry, complementary mobile phases, and sequenttal exoglycosidase digestion J Am Sot Mass Spectrom 5, 350–358

    Article  Google Scholar 

  38. Leroy, Y, Lemome, J, Rmart, G, Mtchalskt, J-C, Montreuil, J, and Fournet, B (1990) Separation of ohgosacchartdes by capillary supercritical fluid chromatography and analysts by dtrect coupling to high-resolution mass spectrometer—applmation to analysts of oltgomannostdic N-glycans Anal Biochem 184,235–243

    Article  PubMed  CAS  Google Scholar 

  39. Kelly, J F, Locke, S J, and Thtbault, P (1993) Analysis of protein glycoforms by captllary electrophoresls-electrospray mass spectrometry Dlscovely Newsletter (Beckman) 2, 1–6

    Google Scholar 

  40. Dwek, R A, Edge, C J, Harvey, D J, Wormald, M R, and Parekh, R B (1993) Analysis of glycoprotem-associated olrgosacchartdes Annu Rev Biochem 62,65–100

    Article  PubMed  CAS  Google Scholar 

  41. Jacob, G S and Scudder, P (1994) Glycostdases in structural analysts Methods Enzymol 230, 280–299

    Article  PubMed  CAS  Google Scholar 

  42. Butters, T D, Scudder, P, Rotsaert, J, Petursson, S, Fleet, G W J., Wtllenbrock, F W, and Jacob, G S (1991) Purtfication to homogeneity of Charonza lampas α-fucostdase by using sequenttal hgand-affinity chromatography Biochem J 279, 189–195

    PubMed  CAS  Google Scholar 

  43. Clarke, V A, Platt, N, and Butters, T D (1995) Cloning and expression of the B-N-acetylglucosamimdase gene from Streptococcus pneumonlae —generatton of truncated enzymes wtth modified aglycon specificity J Biol Chem 270,8805–8814

    Article  PubMed  CAS  Google Scholar 

  44. Kobata, A (1979) Use of endo-and exoglycostdases for structural studies of glycocomugates Anal Biochem 100, 1–14

    Article  PubMed  CAS  Google Scholar 

  45. Guile, G R, Wong, S Y and Dwek, R A (1994) Analytical and preparative separation of anionic oltgosaccharides by weak amon-exchange high-performance ltqmd chromatography on an inert polymer column Anal Biochem 222,231–235

    Article  PubMed  CAS  Google Scholar 

  46. Edge, C J, Rademacher, T W, Wormald, M R, Parekh, R B, Butters, T D, Wing, D R, and Dwek, R A (1992) Fast sequencing of ohgosacchartdes—the reagent-array analysis method Proc Natl Acad Scz USA 89, 6338–6342

    Article  CAS  Google Scholar 

  47. Rademacher, T W, Parekh, R B, and Dwek, R A (1988) Glycobiology Annu Rev Biochem 57,785–838

    Article  PubMed  CAS  Google Scholar 

  48. Yeh, J C, Seals, J R, Murphy, C I, Vanhalbeek, H, and Cummings, R D (1993) Sitespecific N-glycosylatton and ohgosaccharrde structures of recombmant HIV-1 gp120 derived from a baculovtrus expression system Biochemzstry 32, 11,087–11,099

    Article  CAS  Google Scholar 

  49. Rohrer, J S, Cooper, G A, and Townsend, R R (1993) Identification, quantification, and characterizatton of glycopeptldes in reversed-phase HPLC separations of glycoprotem proteolytm digests Anal Biochem 212,7–16

    Article  PubMed  CAS  Google Scholar 

  50. Elbem, A D (1987) Glycosylation inhibttors for N-linked glycoprotems Methods Enzymol 138,661–709

    Article  Google Scholar 

  51. Fleet, G W J (1988) Ammo-sugar derivatives and related compounds as glycosidase mhibitors Spec Pub1-RSot Chem 65, 149–162

    CAS  Google Scholar 

  52. Jacob, G S, Scudder, P, Butters, T D, Jones, I, and Tiemeter, D C (1992) Ammosugar attenuation of HIV Infection, in Natural Products as Antwral Agents (Chu, C K and Cutler, H G, eds), Plenum, New York, pp 137–152

    Google Scholar 

  53. Karlsson, G B, Butters, T D, Dwek, R A, and Platt, F M (1993) Effects of the ammo sugar N-butyldeoxynoJtrimycm on the N-glycosylation of recombinant gp120 Bzol Chem 268,570–576

    CAS  Google Scholar 

  54. Davis, S J, Davies, E A, Barclay, A N, Daenke, S, Bodian, D L., Jones, E Y, Stuart, D I, Butters, T D, Dwek, R A, and Vandermerwe, P A (1995) Ligand bmding by the nnmunoglobulm superfamrly recognmon molecule CD2 is glycosylation-independent J Biol Chem 270,369–375

    Article  PubMed  Google Scholar 

  55. Lee, W.-R, Syu, W-J, Du, B, Matsuda, M, Tan, S, Wolf, A, Essex, M, and Lee, T-H (1992) Nonrandom distribution of gpl20 N-lmked glycosylation sites important for mfectivlty of human immunodeficiency vnus type 1 Proc Natl Acad SCI USA 89, 2213–2217

    Article  PubMed  CAS  Google Scholar 

  56. Paulson, J C and Rogers, G N (1987) Restalylated erythrocytes for assessment of the specificity of sialylohgosaccharide binding protems Methods Enzymol 138, 162–168

    Article  PubMed  CAS  Google Scholar 

  57. Whtteheart, S W., Passamtt, A, Retchner, J S, Holt, G D, Haltlwanger, R S, and Hart, G. W (1989) Glycosyltransferase probes Methods Enzymol 179, 82–95

    Article  Google Scholar 

  58. Natsuka, S and Lowe, J B (1994) Enzymes involved in mammahan ohgosaccharide biosynthests Curr Open Strut Biol 4, 683–691

    Article  CAS  Google Scholar 

  59. Mizuochl, T, Matthews, T J, Kato, M, Hamako, J, Titani, K, Solomon, J, and Feizi, T. (1990) Diversity of ohgosaccharide structures on the envelope glycoprotem GP 120 of Human Immunodefictency Vn-us-1 from the lymphoblastoid cell lme H9—presence of complex-type ohgosaccharides with bisecting N-acetylglucosamme residues J Bzol Chem 265,8519–8524

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc , Totowa, NJ.

About this protocol

Cite this protocol

Butters, T.D. (1998). Glycoprotein Analysis. In: Rapley, R., Walker, J.M. (eds) Molecular Biomethods Handbook. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1007/978-1-59259-642-3_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-642-3_40

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-501-0

  • Online ISBN: 978-1-59259-642-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics