Skip to main content

Extending the Life Span of Acute Neuronal Tissue for Imaging and Electrophysiological Studies

  • Protocol
  • First Online:
Basic Neurobiology Techniques

Part of the book series: Neuromethods ((NM,volume 152))

Abstract

Slice preparations of neuronal tissue are among the most commonly used experimental approaches in the field of neuroscience. They are employed for a variety of techniques addressing questions across the entire neuroscience spectrum, including immunohistochemical, anatomical, and electrophysiological methods to study the properties of individual, and networks of neurons. In the past decades, slice preparations have provided information that has allowed us to develop our understanding of the central nervous system. Unlike cultures, slice preparations leave the topography of neurons and glia intact and therefore retain a considerable degree of functionality that allows molecular, cellular, and network investigations. However, a major limitation of using acute brain slices is their life span which is limited to 6–8 h due to intrinsic and extrinsic factors. Recently, new technological and methodological modifications have proved efficient in extending the life span of acute neuronal tissue. In this chapter, we will review the mechanisms leading to tissue deterioration and describe in detail the steps required to achieve a significant enhancement in neuronal viability and longevity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Warburg O, Wind F, Negelein E (1926) The metabolism of tumors in the body. J Gen Physiol 8:519–530

    Article  Google Scholar 

  2. Ashford CA, Dixon KC (1935) The effect of potassium on the glucolysis of brain tissue with reference to the Pasteur effect. Biochem J 29:157–168

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Dickens F, Greville G (1935) The metabolism of normal and tumour tissue: neutral salt effects. Biochem J 29:1468–1483

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Mcilwain H, Buchel L, Cheshire JD (1951) The inorganic phosphate and phosphocreatine of brain especially during metabolism in vitro. Biochem J 48:12–20

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Li C-L, Mcilwain H (1957) Maintenance of resting membrane potentials in slices of mammalian cerebral cortex and other tissues in vitro. J Physiol 139:178–190

    Article  CAS  Google Scholar 

  6. Hillman H, Mcilwain H (1961) Membrane potentials in mammalian cerebral tissues in vitro: dependence on ionic environment. J Physiol 157:263–278

    Article  CAS  Google Scholar 

  7. Yamamoto C, McIlwain H (1966) Electrical activities in thin sections from the mammalian brain maintained in chemically-defined media in vitro. J Neurochem 13:1333–1343

    Article  CAS  Google Scholar 

  8. Otsuka M, Konishi S (1974) Electrophysiology of the mammalian spinal curd in vitro. Nature 252:733–734. https://doi.org/10.1038/252497a0

    Article  CAS  PubMed  Google Scholar 

  9. Mitra P, Brownstone RM (2012) An in vitro spinal cord slice preparation for recording from lumbar motoneurons of the adult mouse. J Neurophysiol 107:728–741. https://doi.org/10.1152/jn.00558.2011

    Article  PubMed  Google Scholar 

  10. Kerkut G, Bagust J (1995) The isolated mammalian spinal cord. Prog Neurobiol 46:1–48

    Article  CAS  Google Scholar 

  11. Takahashi T (1978) Intracellular recording from visually identified motoneurons in rat spinal cord slices. Proc R Soc London 202:417–421

    Article  CAS  Google Scholar 

  12. Gibb A, Edwards F (1994) Patch clamp recording from cells in sliced tissues. Microelectrode Tech:255–274

    Google Scholar 

  13. Rekling JC, Funk GD, D a B et al (2000) Synaptic control of motoneuronal excitability. Physiol Rev 80:767–852. https://doi.org/10.1001/jama.2014.15298.Metformin

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Carp JS, Tennissen AM, Mongeluzi DL et al (2008) An in vitro protocol for recording from spinal motoneurons of adult rats. J Neurophysiol 100:474–481. https://doi.org/10.1152/jn.90422.2008

    Article  PubMed  PubMed Central  Google Scholar 

  15. Carlin KP, Jiang Z, Brownstone RM (2000) Characterization of calcium currents in functionally mature mouse spinal motoneurons. Eur J Neurosci 12:1624–1634

    Article  CAS  Google Scholar 

  16. Bennett DJ, Li Y, Siu M (2001) Plateau potentials in sacrocaudal motoneurons of chronic spinal rats, recorded in vitro. J Neurophysiol 86:1955–1971

    Article  CAS  Google Scholar 

  17. Genovese T, Esposito E, Mazzon E et al (2009) Beneficial effects of ethyl pyruvate in a mouse model of spinal cord injury. Shock 32:217–227. https://doi.org/10.1097/SHK.0b013e31818d4073

    Article  CAS  PubMed  Google Scholar 

  18. Ottoson D, Svaetichin G (1953) The electrical activity of the retinal receptor layer. Acta Physiol Scand 29:31–39. https://doi.org/10.1111/j.1748-1716.1953.tb00995.x

    Article  CAS  PubMed  Google Scholar 

  19. Tomita T (1965) Electrophysiological study of the mechanisms subserving color coding in the fish retina. Cold Spring Harb Symp Quant Biol 30:559–566. https://doi.org/10.1101/SQB.1965.030.01.054

    Article  CAS  PubMed  Google Scholar 

  20. Buskila Y, Farkash S, Hershfinkel M, Amitai Y (2005) Rapid and reactive nitric oxide production by astrocytes in mouse neocortical slices. Glia 52:169–176

    Article  Google Scholar 

  21. Cameron MA, Al AA, Buskila Y et al (2017) Differential effect of brief electrical stimulation on voltage-gated potassium channels. J Neurophysiol. https://doi.org/10.1152/jn.00915.2016

    Article  Google Scholar 

  22. Buskila Y, Crowe SE, Ellis-Davies GCR (2013) Synaptic deficits in layer 5 neurons precede overt structural decay in 5xFAD mice. Neuroscience 254:152–159

    Article  CAS  Google Scholar 

  23. Flynn JR, Conn VL, Boyle KA et al (2017) Anatomical and molecular properties of long descending propriospinal neurons in mice. Front Neuroanat 11:1–13. https://doi.org/10.3389/fnana.2017.00005

    Article  CAS  Google Scholar 

  24. Agmon A, Connors B (1991) Thalamocortical responses of mouse somatosensory (barrel) cortexin vitro. Neuroscience 41:365–379

    Article  CAS  Google Scholar 

  25. Buskila Y, Morley JW, Tapson J, van Schaik A (2013) The adaptation of spike backpropagation delays in cortical neurons. Front Cell Neurosci 7:192. https://doi.org/10.3389/fncel.2013.00192

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kantevari S, Buskila Y, Ellis-Davies GCR (2012) Synthesis and characterization of cell-permeant 6-nitrodibenzofuranyl-caged IP3. Photochem Photobiol Sci 11:508–513

    Article  CAS  Google Scholar 

  27. Aghajanian GK, Rasmussen K (1989) Intracellular studies in the facial nucleus illustrating a simple new method for obtaining viable motoneurons in adult rat brain slices. Synapse 3:331–338. https://doi.org/10.1002/syn.890030406

    Article  CAS  PubMed  Google Scholar 

  28. Tanaka Y, Tanaka Y, Furuta T et al (2008) The effects of cutting solutions on the viability of GABAergic interneurons in cerebral cortical slices of adult mice. J Neurosci Methods 171:118–125. https://doi.org/10.1016/j.jneumeth.2008.02.021

    Article  CAS  PubMed  Google Scholar 

  29. Hong J, Zhang J, Xiao C, Kong J (2006) Patch-clamp studies in the CNS illustrate a simple new method for obtaining viable neurons in rat brain slices: glycerol replacement of NaCl protects CNS neurons. J Neurosci Methods 158:251–259. https://doi.org/10.1016/j.jneumeth.2006.06.006

    Article  CAS  Google Scholar 

  30. Ting J, Daigle T, Chen Q, Feng G (2014) Acute brain slice methods for adult and aging animals: application of targeted patch clamp analysis and Optogenetics. Methods Mol Biol 1183:221–242. https://doi.org/10.1007/978-1-4939-1096-0

    Article  PubMed  PubMed Central  Google Scholar 

  31. Brahma B, Forman RE, Stewart EE et al (2000) Ascorbate inhibits edema in brain slices. J Neurochem 74:1263–1270. https://doi.org/10.1046/j.1471-4159.2000.741263.x

    Article  CAS  PubMed  Google Scholar 

  32. Connors BW, Gutnick MJ, Prince DA (1982) Electrophysiological properties of neocortical neurons in vitro. J Neurophysiol 48:1302–1320

    Article  CAS  Google Scholar 

  33. Llinás R, Muhlethaler M (1988) An electrophysiological study of the in vitro, perfused brain stem-cerebellum of adult Guinea-pig. J Physiol 404:215–240

    Article  Google Scholar 

  34. Geiger JR, Bischofberger J, Vida I et al (2002) Patch-clamp recording in brain slices with improved slicer technology. Eur J Phys 443:491–501. https://doi.org/10.1007/s00424-001-0735-3

    Article  CAS  Google Scholar 

  35. Buskila Y, Breen PP, Tapson J et al (2014) Extending the viability of acute brain slices. Sci Rep 4:4–10. https://doi.org/10.1038/srep05309

    Article  CAS  Google Scholar 

  36. Aitken PG, Dudek FE, Eskessen K et al (1995) Making the best of brain slices: comparing preparative methods. J Neurosci Methods 59:151–156

    Article  Google Scholar 

  37. Cameron M, Kekesi O, Morley JW et al (2016) Calcium imaging of am dyes following prolonged incubation in acute neuronal tissue. PLoS One 11:e0155468. https://doi.org/10.1371/journal.pone.0155468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Breen PP, Buskila Y (2014) Braincubator: an incubation system to extend brain slice lifespan for use in neurophysiology. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, pp 4864–4867

    Google Scholar 

  39. Fujikawa DG (2015) The role of Excitotoxic programmed necrosis in acute brain injury. CSBJ 13:212–221. https://doi.org/10.1016/j.csbj.2015.03.004

    Article  CAS  PubMed  Google Scholar 

  40. Karnatovskaia LV, Wartenberg KE, Freeman WD (2014) Therapeutic hypothermia for neuroprotection: history, mechanisms, risks, and clinical applications. The Neurohospitalist 4:153–163. https://doi.org/10.1177/1941874413519802

    Article  PubMed  PubMed Central  Google Scholar 

  41. Whittingham TS, Lust WD, Christakis DA, Passonneau JV (1984) Metabolic stability of hippocampal slice preparations during prolonged incubation. J Neurochem 43:689–696

    Article  CAS  Google Scholar 

  42. Feig S, Lipton P (1990) N-methyl-D-aspartate receptor activation and Ca2+ account for poor pyramidal cell structure in hippocampal slices. J Neurochem 55:473–483

    Article  CAS  Google Scholar 

  43. Davie JT, Kole MHP, Letzkus JJ et al (2006) Dendritic patch-clamp recording. Nat Protoc 1:1235–1247

    Article  CAS  Google Scholar 

  44. Rice ME (1999) Use of ascorbate in the preparation and maintenance of brain slices. Methods 18:144–149. https://doi.org/10.1006/meth.1999.0767

    Article  CAS  PubMed  Google Scholar 

  45. Lee J, Grabb MC, Zipfel GJ, Choi DW (2000) Tissue responses to ischemia brain tissue responses to ischemia. J Clin Invest 106:723–731

    Article  CAS  Google Scholar 

  46. Verkhratsky a KH (1996) Calcium signalling in glial cells. Trends Neurosci 19:346–352. https://doi.org/10.1016/0166-2236(96)10048-5

    Article  PubMed  Google Scholar 

  47. Won SJ, Kim DY, Gwag BJ (2002) Cellular and molecular pathways of ischemic neuronal death. J Biochem Mol Biol 35:67–86

    CAS  PubMed  Google Scholar 

  48. Lee J, Grabb MC, Zipfel GJ, Choi DW (2000) Brain tissue responses to ischemia. J Clin Invest 106:723–731

    Article  CAS  Google Scholar 

  49. Silver I, Erecinska M (1998) Oxygen and ion concentrations in normoxic and hypoxic brain cells. In: Oxygen transport to tissue XX. Springer, Boston, MA, pp 7–16

    Chapter  Google Scholar 

  50. Moyer JR, Brown TH (2002) Patch-clamp techniques applied to brain slices. In: Patch-clamp anal. Humana Press, New Jersey, pp 135–193

    Chapter  Google Scholar 

  51. Buskila Y, Amitai Y (2010) Astrocytic iNOS-dependent enhancement of synaptic release in mouse neocortex. J Neurophysiol 103:1322–1328. https://doi.org/10.1152/jn.00676.2009

    Article  CAS  PubMed  Google Scholar 

  52. Aitken PG, Breese GR, Dudek FF et al (1995) Preparative methods for brain slices: a discussion. J Neurosci Methods 59:139–149

    Article  CAS  Google Scholar 

  53. Cohen P (1997) The search for physiological substrates of MAP and SAP kinases in mammalian cells. Trends Cell Biol 8924:353–361

    Article  Google Scholar 

  54. Espanol MT (1996) Adult rat brain-slice preparation for NMR studies of hypoxia. Anesthesiology 84:201–210

    Article  CAS  Google Scholar 

  55. Watson GB, Lopez OT, Charles VD, Lanthorn TH (1994) Assessment of long-term effects of transient anoxia on metabolic activity of rat hippocampal slices using triphenyltetrazolium chloride. J Neurosci Methods 53:203–208

    Article  CAS  Google Scholar 

  56. Ames A, Nesbett FB (1981) In vitro retina as an experimental model of the central nervous system. J Neurochem 37:867–877. https://doi.org/10.1111/j.1471-4159.1981.tb04473.x

    Article  CAS  PubMed  Google Scholar 

  57. Hudson B, Uphol WB, Devinny J, Vinograd J (1969) The use of an ethidium analogue in the dye-buoyant density procedure for the isolation of closed circular DNA: the variation of the superhelix density of mitochondrial DNA. Biochemistry 62:813–820

    CAS  Google Scholar 

  58. Latt SA (1973) Microfluorometric detection of deoxyribonucleic acid replication in human metaphase chromosomes. Proc Natl Acad Sci 70:3395–3399

    Article  CAS  Google Scholar 

  59. Williamson D, Fennell D (1975) The use of fluorescent DNA-binding agent for detecting and separating yeast mitochondrial DNA. Methods Cell Biol 12:335–352

    Article  CAS  Google Scholar 

  60. Monette R, Small DL, Mealing G, Morley P (1998) A fluorescence confocal assay to assess neuronal viability in brain slices. Brain Res Brain Res Protoc 2:99–108

    Article  CAS  Google Scholar 

  61. Khatri N, Man HY (2013) Synaptic activity and bioenergy homeostasis: implications in brain trauma and neurodegenerative diseases. Front Neurol 4:199. https://doi.org/10.3389/fneur.2013.00199

    Article  PubMed  PubMed Central  Google Scholar 

  62. Malarkey EB, Parpura V (2008) Mechanisms of glutamate release from astrocytes. Neurochem Int 52:142–154

    Article  CAS  Google Scholar 

  63. Reid KH, Edmonds HL, Schurr A et al (1988) Pitfalls in the use of brain slices. Prog Neurobiol 31:1–18

    Article  CAS  Google Scholar 

  64. Barone FC, Raymond ZF (1997) Brain cooling during transient focal ischemia provides complete neuroprotection. Neurosci Biobehav Rev 21:31–44

    Article  CAS  Google Scholar 

  65. Erecinska M, Thoresen M, Silver IA (2003) Effects of hypothermia on energy metabolism in mammalian central nervous system. J Cereb Blood Flow Metab 23:513–530. https://doi.org/10.1097/01.WCB.0000066287.21705.21

    Article  CAS  PubMed  Google Scholar 

  66. Attwell D, Laughlin SB (2001) An energy budget for signaling in the Grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145. https://doi.org/10.1097/00004647-200110000-00001

    Article  CAS  PubMed  Google Scholar 

  67. Waardes A, Van Thillart G, Van Den Erkelensy C et al (1990) Functional coupling of glycolysis and phosphocreatine utilization in anoxic fish muscle. J Biol Chem 265:914–923

    Google Scholar 

  68. Tisherman SA, Sterz F (2005) Therapeutic hypothermia. Springer

    Google Scholar 

  69. Hicks SD, DeFranco DB, Callaway CW (2000) Hypothermia during reperfusion after asphyxial cardiac arrest improves functional recovery and selectively alters stress-induced protein expression. J Cereb Blood Flow Metab 20:520–530. https://doi.org/10.1097/00004647-200003000-00011

    Article  CAS  PubMed  Google Scholar 

  70. Canevari L, Console A, Tendi EA et al (1999) Effect of postischaemic hypothermia on the mitochondrial damage induced by ischaemia and reperfusion in the gerbil. Brain Res 817:241–245. https://doi.org/10.1016/S0006-8993(98)01278-5

    Article  CAS  PubMed  Google Scholar 

  71. Richerson GB, Messer C (1995) Effect of composition of experimental solutions on neuronal survival during rat brain slicing. Exp Neurol 131:133–143. https://doi.org/10.1016/0014-4886(95)90015-2

    Article  CAS  PubMed  Google Scholar 

  72. Yu DY, Cringle SJ (2001) Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease. Prog Retin Eye Res 20:175–208. https://doi.org/10.1016/S1350-9462(00)00027-6

    Article  CAS  Google Scholar 

  73. Cameron MA, Suaning GJ, Lovell NH, Morley JW (2013) Electrical stimulation of inner retinal neurons in wild-type and retinally degenerate (rd/rd) mice. PLoS One 8:e68882. https://doi.org/10.1371/journal.pone.0068882

    Article  CAS  Google Scholar 

  74. Medrano CJ, Fox DA (1995) Oxygen consumption in the rat outer and inner retina: light- and pharmacologically-induced inhibition. Exp Eye Res 61:273–284. https://doi.org/10.1016/S0014-4835(05)80122-8

    Article  CAS  PubMed  Google Scholar 

  75. Cameron M, Kékesi O, Morley JW et al (2016) Calcium imaging of AM dyes following prolonged incubation in acute neuronal tissue. PLoS One 11:e0155468. https://doi.org/10.1371/journal.pone.0155468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Feigenspan A, Babai NZ (2017) Preparation of horizontal slices of adult mouse retina for electrophysiological studies. J Vis Exp:1–6. https://doi.org/10.3791/55173

  77. Kulkarni M, Schubert T, Baden T et al (2015) Imaging Ca2+ dynamics in cone photoreceptor axon terminals of the mouse retina. J Vis Exp:e52588. https://doi.org/10.3791/52588

  78. Buskila Y, Breen P, Wright J (2015) Device for storing a tissue sample WO2015021513

    Google Scholar 

  79. Cameron MA, Kekesi O, Morley JW et al (2017) Prolonged incubation of acute neuronal tissue for electrophysiology and. J Vis Exp 120:1–6. https://doi.org/10.3791/55396

    Article  CAS  Google Scholar 

  80. Grøndahl TO, Langmoen IA (1993) Epileptogenic effect of antibiotic drugs. J Neurosurg 78:938–943. https://doi.org/10.3171/jns.1993.78.6.0938

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yossi Buskila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Buskila, Y., Bellot-Saez, A., Kékesi, O., Cameron, M., Morley, J. (2020). Extending the Life Span of Acute Neuronal Tissue for Imaging and Electrophysiological Studies. In: Wright, N. (eds) Basic Neurobiology Techniques . Neuromethods, vol 152. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9944-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9944-6_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9943-9

  • Online ISBN: 978-1-4939-9944-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics