Skip to main content

In Vivo Bioluminescent Monitoring of Parasites in BALB/c Mouse Models of Cutaneous Leishmaniasis Drug Discovery

  • Protocol
  • First Online:
Book cover Bioluminescent Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2081))

Abstract

Confirming the in vivo efficacy of potential antileishmanial compounds that display in vitro potency and good chemical characteristics is one of the most important steps in preclinical research drug discovery before human clinical trials begin. Here we describe the use of the in vivo bioluminescent monitoring of high and low inocula of luciferase-expressing Leishmania major (L. major) parasites in traditional and more innovative rodent models of in vivo cutaneous leishmaniasis (CL) drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization (2010) Control of the leishmaniases. World Health Organ Tech Rep Ser 949:xii–xiii 1-186

    Google Scholar 

  2. Croft SL, Seifert K, Yardley V (2006) Current scenario of drug development for leishmaniasis. Indian J Med Res 123(3):399–410

    CAS  PubMed  Google Scholar 

  3. Pigott DM, Bhatt S, Golding N et al (2014) Global distribution maps of the leishmaniases. Elife 3. https://doi.org/10.7554/eLife.02851

  4. Mears ER, Modabber F, Don R, Johnson GE (2015) A review: the current in vivo models for the discovery and utility of new anti-leishmanial drugs targeting cutaneous leishmaniasis. PLoS Negl Trop Dis 9(9):e0003889. https://doi.org/10.1371/journal.pntd.0003889

    Article  PubMed  PubMed Central  Google Scholar 

  5. Robledo SM, Carrillo LM, Daza A et al (2012) Cutaneous leishmaniasis in the dorsal skin of hamsters: a useful model for the screening of antileishmanial drugs. J Vis Exp 62:3533. https://doi.org/10.3791/3533

    Article  CAS  Google Scholar 

  6. Milon G, Del Giudice G, Louis JA (1995) Immunobiology of experimental cutaneous leishmaniasis. Parasitol Today 11(7):244–247

    Article  CAS  Google Scholar 

  7. Gomes-Silva A, Valverde JG, Ribeiro-Romao RP et al (2013) Golden hamster (Mesocricetus auratus) as an experimental model for Leishmania (Viannia) braziliensis infection. Parasitology 140(6):771–779. https://doi.org/10.1017/S0031182012002156

    Article  CAS  PubMed  Google Scholar 

  8. Ribeiro-Romao RP, Moreira OC, Osorio EY et al (2014) Comparative evaluation of lesion development, tissue damage, and cytokine expression in golden hamsters (Mesocricetus auratus) infected by inocula with different Leishmania (Viannia) braziliensis concentrations. Infect Immun 82(12):5203–5213. https://doi.org/10.1128/IAI.02083-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kimblin N, Peters N, Debrabant A et al (2008) Quantification of the infectious dose of Leishmania major transmitted to the skin by single sand flies. Proc Natl Acad Sci U S A 105(29):10125–10130. https://doi.org/10.1073/pnas.0802331105

    Article  PubMed  PubMed Central  Google Scholar 

  10. Abdeladhim M, Kamhawi S, Valenzuela JG (2014) What’s behind a sand fly bite? The profound effect of sand fly saliva on host hemostasis, inflammation and immunity. Infect Genet Evol 28:691–703. https://doi.org/10.1016/j.meegid.2014.07.028

    Article  PubMed  PubMed Central  Google Scholar 

  11. Belkaid Y, Kamhawi S, Modi G et al (1998) Development of a natural model of cutaneous leishmaniasis: powerful effects of vector saliva and saliva preexposure on the long-term outcome of Leishmania major infection in the mouse ear dermis. J Exp Med 188(10):1941–1953

    Article  CAS  Google Scholar 

  12. Cawlfield A, Vesely B, Ngundam F et al (2018) Use of in vivo imaging system technology in Leishmania major BALB/c mouse ear infection studies. J Med Entomol 55(2):429–435. https://doi.org/10.1093/jme/tjx219

    Article  PubMed  Google Scholar 

  13. Greer LF 3rd, Szalay AA (2002) Imaging of light emission from the expression of luciferases in living cells and organisms: a review. Luminescence 17(1):43–74. https://doi.org/10.1002/bio.676

    Article  CAS  PubMed  Google Scholar 

  14. Lang T, Goyard S, Lebastard M, Milon G (2005) Bioluminescent Leishmania expressing luciferase for rapid and high throughput screening of drugs acting on amastigote-harbouring macrophages and for quantitative real-time monitoring of parasitism features in living mice. Cell Microbiol 7(3):383–392. https://doi.org/10.1111/j.1462-5822.2004.00468

    Article  CAS  PubMed  Google Scholar 

  15. Roy G, Dumas C, Sereno D et al (2000) Episomal and stable expression of the luciferase reporter gene for quantifying Leishmania spp. infections in macrophages and in animal models. Mol Biochem Parasitol 110(2):195–206

    Article  CAS  Google Scholar 

  16. Thalhofer CJ, Graff JW, Love-Homan L et al (2010) In vivo imaging of transgenic Leishmania parasites in a live host. J Vis Exp 41:1980. https://doi.org/10.3791/1980

    Article  Google Scholar 

  17. Caridha D, Parriot S, Hudson TH et al (2017) Use of optical imaging technology in the validation of a new, rapid, cost-effective drug screen as part of a tiered in vivo screening paradigm for development of drugs to treat cutaneous leishmaniasis. Antimicrob Agents Chemother 61(4):e02048-16. https://doi.org/10.1128/AAC.02048-16

    Article  PubMed  PubMed Central  Google Scholar 

  18. Schuster S, Hartley MA, Tacchini-Cottier F, Ronet C (2014) A scoring method to standardize lesion monitoring following intra-dermal infection of Leishmania parasites in the murine ear. Front Cell Infect Microbiol 4:67. https://doi.org/10.3389/fcimb.2014.00067

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lecoeur H, Buffet PA, Milon G, Lang T (2010) Early curative applications of the aminoglycoside WR279396 on an experimental Leishmania major-loaded cutaneous site do not impair the acquisition of immunity. Antimicrob Agents Chemother 54(3):984–990. https://doi.org/10.1128/AAC.01310-09

    Article  CAS  PubMed  Google Scholar 

  20. Lecoeur H, Buffet P, Morizot G et al (2007) Optimization of topical therapy for Leishmania major localized cutaneous leishmaniasis using a reliable C57BL/6 model. PLoS Negl Trop Dis 1(2):e34. https://doi.org/10.1371/journal.pntd.0000034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sacks DL, Melby PC (2001) Animal models for the analysis of immune response to leishmaniasis. Curr Protoc Immunol . Chapter 19: Unit 19.2. https://doi.org/10.1002/0471142735.im1902s28

  22. Sacks DL, Melby PC (2015) Animal models for the analysis of immune response to leishmaniasis. Curr Protoc Immunol 108(19):2): 1–2):24. https://doi.org/10.1002/0471142735.im1902s28

    Article  Google Scholar 

  23. Fischer MR, Dominik J, Kautz-Neu K et al (2013) Animal model for cutaneous leishmaniasis. In: Has C, Sitaru C (eds) Molecular dermatology. Methods in molecular biology (methods and protocols), vol 961. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-227-8_26

    Chapter  Google Scholar 

  24. Lawyer P, Killick-Kendrick M, Rowland T et al (2017) Laboratory colonization and mass rearing of phlebotomine sand flies (Diptera, Psychodidae). Parasite 24:42. https://doi.org/10.1051/parasite/2017041

    Article  PubMed  PubMed Central  Google Scholar 

  25. Baldwin TM, Elso C, Curtis J et al (2003) The site of Leishmania major infection determines disease severity and immune responses. Infect Immun 71(12):6830–6834. https://doi.org/10.1128/IAI.71.12.6830-6834.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Spath GF, Beverley SM (2001) A lipophosphoglycan-independent method for isolation of infective Leishmania metacyclic promastigotes by density gradient centrifugation. Exp Parasitol 99(2):97–103

    Article  CAS  Google Scholar 

  27. Turner PV, Brabb T, Pekow C, Vasbinder MA (2011) Administration of substance to laboratory animals: routes of administration and factors to consider. J Am Assoc Lab Anim Sci 50(5):600–613

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Nasseri M, Modabber FZ (1979) Generalized infection and lack of delayed hypersensitivity in BALB/c mice infected with Leishmania tropica major. Infect Immun 26(2):611–614

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Disclaimer: Material has been reviewed by the Walter Reed Army Institute of Research. There is no objection to its presentation and/or publication. The opinions or assertions contained herein are the private views of the author, and are not to be construed as official, or as reflecting true views of the Department of the Army or the Department of Defense.

Research was conducted under an approved animal use protocol in an AAALACi accredited facility in compliance with the Animal Welfare Act and other federal statutes and regulations relating to animals and experiments involving animals and adheres to principles stated in the Guide for the Care and Use of Laboratory Animals, NRC Publication, 2011 edition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Caridha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Caridha, D., Leed, S., Cawlfield, A. (2020). In Vivo Bioluminescent Monitoring of Parasites in BALB/c Mouse Models of Cutaneous Leishmaniasis Drug Discovery. In: Ripp, S. (eds) Bioluminescent Imaging. Methods in Molecular Biology, vol 2081. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9940-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9940-8_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9939-2

  • Online ISBN: 978-1-4939-9940-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics