Skip to main content

Production of Multicomponent Protein Templates for the Positioning and Stabilization of Enzymes

  • Protocol
  • First Online:
Protein Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2073))

  • 2507 Accesses

Abstract

Harnessing the ability of proteins to self-assemble into complex structures has enabled the creation of templates for applications in nanotechnology. Protein templates can be used to position functional molecules in regular patterns with nanometer precision over large surface areas. A difficult but successful approach to building customizable protein templates involves designing novel protein-protein interfaces to join protein building blocks into ordered arrangements. This approach was illustrated recently by engineering the protein interfaces of a molecular chaperone to produce filamentous templates composed of repeating subunits. In this chapter, we describe how these multicomponent protein templates can be produced recombinantly, assembled into filaments, and used as material templates. The templates enable the positioning and alignment of functional molecules at varying distances along the length of the filament, which can be demonstrated using a Förster resonance energy transfer (FRET) assay. In addition, we describe a method to quantify the chaperone ability of these filaments to stabilize and protect other proteins from thermal-induced aggregation—a useful property for bionanotechnology applications that involve molecular scaffolds for positioning and stabilizing enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Glover DJ, Clark DS (2016) Protein calligraphy: a new concept begins to take shape. ACS Cent Sci 2:438–444

    Article  CAS  Google Scholar 

  2. Kostiainen MA, Hiekkataipale P, Laiho A, Lemieux V, Seitsonen J, Ruokolainen J, Ceci P (2013) Electrostatic assembly of binary nanoparticle superlattices using protein cages. Nat Nanotechnol 8:52–56

    Article  CAS  Google Scholar 

  3. Schoen AP, Schoen DT, Huggins KNL, Arunagirinathan MA, Heilshorn SC (2011) Template engineering through epitope recognition: a modular, biomimetic strategy for inorganic nanomaterial synthesis. J Am Chem Soc 133:18202–18207

    Article  CAS  Google Scholar 

  4. Oh D, Qi J, Lu Y-C, Zhang Y, Shao-Horn Y, Belcher AM (2013) Biologically enhanced cathode design for improved capacity and cycle life for lithium-oxygen batteries. Nat Commun 4:2756

    Article  Google Scholar 

  5. Wörsdörfer B, Woycechowsky KJ, Hilvert D (2011) Directed evolution of a protein container. Science 331:589–592

    Article  Google Scholar 

  6. Lau YH, Giessen TW, Altenburg WJ, Silver PA (2018) Prokaryotic nanocompartments form synthetic organelles in a eukaryote. Nat Commun 9:1311

    Article  Google Scholar 

  7. King NP, Bale JB, Sheffler W, McNamara DE, Gonen S, Gonen T, Yeates TO, Baker D (2014) Accurate design of co-assembling multi-component protein nanomaterials. Nature 510:103–108

    Article  CAS  Google Scholar 

  8. Lai Y-T, Reading E, Hura GL, Tsai K-L, Laganowsky A, Asturias FJ, Tainer JA, Robinson CV, Yeates TO (2014) Structure of a designed protein cage that self-assembles into a highly porous cube. Nat Chem 6:1065–1071

    Article  CAS  Google Scholar 

  9. Bale JB, Gonen S, Liu Y et al (2016) Accurate design of megadalton-scale two-component icosahedral protein complexes. Science 353:389–394

    Article  CAS  Google Scholar 

  10. Shen H, Fallas JA, Lynch E et al (2018) De novo design of self-assembling helical protein filaments. Science 362:705–709

    Article  CAS  Google Scholar 

  11. Glover DJ, Giger L, Kim SS, Naik RR, Clark DS (2016) Geometrical assembly of ultrastable protein templates for nanomaterials. Nat Commun 7:11771

    Article  CAS  Google Scholar 

  12. Whitehead TA, Boonyaratanakornkit BB, Höllrigl V, Clark DS (2007) A filamentous molecular chaperone of the prefoldin family from the deep-sea hyperthermophile Methanocaldococcus jannaschii. Protein Sci 16:626–634

    Article  CAS  Google Scholar 

  13. Lim S, Glover DJ, Clark DS (2018) Prefoldins in Archaea. Adv Exp Med Biol 1106:11–23

    Article  CAS  Google Scholar 

  14. Glover DJ, Giger L, Kim JR, Clark DS (2012) Engineering protein filaments with enhanced thermostability for nanomaterials. Biotechnol J 8:228–236

    Article  Google Scholar 

  15. Glover DJ, Clark DS (2015) Oligomeric assembly is required for chaperone activity of the filamentous γ-prefoldin. FEBS J 282:2985–2997

    Article  CAS  Google Scholar 

  16. Lim S, Jung GA, Muckom RJ, Glover DJ, Clark DS (2019) Engineering bioorthogonal protein-polymer hybrid hydrogel as a functional protein immobilization platform. Chem Commun 55:806–809

    Google Scholar 

  17. Glover DJ, Lim S, Xu D, Sloan NB, Zhang Y, Clark DS (2018) Assembly of multicomponent protein filaments using engineered subunit interfaces. ACS Synth Biol 7:2447–2456

    Article  CAS  Google Scholar 

  18. Kida H, Sugano Y, Iizuka R, Fujihashi M, Yohda M, Miki K (2008) Structural and molecular characterization of the prefoldin beta subunit from Thermococcus strain KS-1. J Mol Biol 383:465–474

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Air Force Office of Scientific Research (FA9550-14-1-0026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominic J. Glover .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lim, S., Clark, D.S., Glover, D.J. (2020). Production of Multicomponent Protein Templates for the Positioning and Stabilization of Enzymes. In: Gerrard, J., Domigan, L. (eds) Protein Nanotechnology. Methods in Molecular Biology, vol 2073. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9869-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9869-2_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9868-5

  • Online ISBN: 978-1-4939-9869-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics