Skip to main content

ATP Synthase: Expression, Purification, and Function

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2073))

Abstract

ATP synthase is an essential enzyme found in all known forms of life, generating the majority of cellular energy via a rotary catalytic mechanism. Here, we describe the in-depth methods for expression, purification, and functional assessment of E. coli ATP synthase.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Stewart AG, Laming EM, Sobti M, Stock D (2014) Rotary ATPases–dynamic molecular machines. Curr Opin Struct Biol 25:40–48. https://doi.org/10.1016/j.sbi.2013.11.013

    Article  CAS  PubMed  Google Scholar 

  2. Stewart AG (2014) The molecular V brake. J Mol Biol 426:273–274. https://doi.org/10.1016/j.jmb.2013.10.003

    Article  CAS  PubMed  Google Scholar 

  3. Stewart AG, Stock D (2012) Priming a molecular motor for disassembly. Structure 20:1799–1800. https://doi.org/10.1016/j.str.2012.10.003

    Article  CAS  PubMed  Google Scholar 

  4. Stewart AG, Sobti M, Harvey RP, Stock D (2013) Rotary ATPases: models, machine elements and technical specifications. BioArchitecture 3:2–12. https://doi.org/10.4161/bioa.23301

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sielaff H, Duncan TM, Borsch M (2018) The regulatory subunit epsilon in Escherichia coli FOF1-ATP synthase. Biochim Biophys Acta Bioenerg 1859:775–788. https://doi.org/10.1016/j.bbabio.2018.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Deckers-Hebestreit G, Greie J, Stalz W, Altendorf K (2000) The ATP synthase of Escherichia coli: structure and function of F0 subunits. Biochim Biophys Acta 1458:364–373

    Article  CAS  Google Scholar 

  7. Wilkens S, Capaldi RA (1998) Electron microscopic evidence of two stalks linking the F1 and F0 parts of the Escherichia coli ATP synthase. Biochim Biophys Acta 1365:93–97

    Article  CAS  Google Scholar 

  8. Boyer PD (1997) The ATP synthase–a splendid molecular machine. Annu Rev Biochem 66:717–749. https://doi.org/10.1146/annurev.biochem.66.1.717

    Article  CAS  PubMed  Google Scholar 

  9. Capaldi RA, Schulenberg B, Murray J, Aggeler R (2000) Cross-linking and electron microscopy studies of the structure and functioning of the Escherichia coli ATP synthase. J Exp Biol 203:29–33

    CAS  PubMed  Google Scholar 

  10. Jiang W, Fillingame RH (1998) Interacting helical faces of subunits a and c in the F1Fo ATP synthase of Escherichia coli defined by disulfide cross-linking. Proc Natl Acad Sci U S A 95:6607–6612

    Article  CAS  Google Scholar 

  11. Lightowlers RN, Howitt SM, Hatch L, Gibson F, Cox GB (1987) The proton pore in the Escherichia coli F0F1-ATPase: a requirement for arginine at position 210 of the a-subunit. Biochim Biophys Acta 894:399–406

    Article  CAS  Google Scholar 

  12. Cingolani G, Duncan TM (2011) Structure of the ATP synthase catalytic complex F1 from Escherichia coli in an autoinhibited conformation. Nat Struct Mol Biol 18:701–707. https://doi.org/10.1038/nsmb.2058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sobti M et al (2016) Cryo-EM structures of the autoinhibited E. coli ATP synthase in three rotational states. Elife 5. https://doi.org/10.7554/eLife.21598

  14. Sobti M et al (2019) Cryo-EM reveals distinct conformations of E. coli ATP synthase on exposure to ATP. Elife 8. https://doi.org/10.7554/eLife.43864

  15. Klionsky DJ, Brusilow WS, Simoni RD (1984) In vivo evidence for the role of the epsilon subunit as an inhibitor of the proton-translocating ATPase of Escherichia coli. J Bacteriol 160:1055–1060

    Article  CAS  Google Scholar 

  16. Ishmukhametov R, Galkin MA, Vik SB (2005) Ultrafast purification and reconstitution of his-tagged cysteine-less Escherichia coli F1Fo ATP synthase. Biochim Biophys Acta 1706:110–116. https://doi.org/10.1016/j.bbabio.2004.09.012

    Article  CAS  PubMed  Google Scholar 

  17. Rubinstein JL (2007) Structural analysis of membrane protein complexes by single particle electron microscopy. Methods 41:409–416. https://doi.org/10.1016/j.ymeth.2006.07.019

    Article  CAS  PubMed  Google Scholar 

  18. Warren GB, Toon PA, Birdsall NJ, Lee AG, Metcalfe JC (1974) Reconstitution of a calcium pump using defined membrane components. Proc Natl Acad Sci U S A 71:622–626

    Article  CAS  Google Scholar 

  19. Lotscher HR, deJong C, Capaldi RA (1984) Interconversion of high and low adenosinetriphosphatase activity forms of Escherichia coli F1 by the detergent lauryldimethylamine oxide. Biochemistry 23:4140–4143

    Article  CAS  Google Scholar 

  20. Linnett PE, Beechey RB (1979) Inhibitors of the ATP synthethase system. Methods Enzymol 55:472–518

    Article  CAS  Google Scholar 

  21. Ishmukhametov RR, Russell AN, Berry RM (2016) A modular platform for one-step assembly of multi-component membrane systems by fusion of charged proteoliposomes. Nat Commun 7:13025. https://doi.org/10.1038/ncomms13025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alastair G. Stewart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sobti, M., Ishmukhametov, R., Stewart, A.G. (2020). ATP Synthase: Expression, Purification, and Function. In: Gerrard, J., Domigan, L. (eds) Protein Nanotechnology. Methods in Molecular Biology, vol 2073. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9869-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9869-2_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9868-5

  • Online ISBN: 978-1-4939-9869-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics