Skip to main content

Peroxiredoxin Proteins as Building Blocks for Nanotechnology

  • Protocol
  • First Online:
Protein Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2073))

Abstract

Peroxiredoxins are ubiquitous antioxidant proteins that exhibit a striking variety of quaternary structures, making them appealing building blocks with which nanoscale architectures are created for applications in nanotechnology. The solution environment of the protein, as well as protein sequence, influences the presentation of a particular structure, thereby enabling mesoscopic manipulations that affect arrangments at the nanoscale. This chapter will equip us with the knowledge necessary to not only produce and manipulate peroxiredoxin proteins into desired structures but also to characterize the different structures using dynamic light scattering, analytical centrifugation, and negative stain transmission electron microscopy, thereby setting the stage for us to use these proteins for applications in nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gerrard JA (2013) Protein nanotechnology: what is it? In: Gerrard JA (ed) Protein nanotechnology: protocols, instrumentation, and applications, 2nd edn. Humana Press, Totowa, NJ, pp 1–15. https://doi.org/10.1007/978-1-62703-354-1_1

    Chapter  Google Scholar 

  2. Wood ZA, Poole LB, Hantgan RR, Karplus PA (2002) Dimers to doughnuts: redox-sensitive oligomerization of 2-cysteine peroxiredoxins. Biochemistry 41:5493–5504. https://doi.org/10.1021/bi012173m

    Article  CAS  Google Scholar 

  3. Cao Z, Roszak AW, Gourlay LJ, Lindsay JG, Isaacs NW (2005) Bovine mitochondrial peroxiredoxin III forms a two-ring catenane. Structure 13:1661–1664. https://doi.org/10.1016/j.str.2005.07.021

    Article  CAS  Google Scholar 

  4. Meissner U, Schroder E, Scheffler D, Martin AG, Harris JR (2007) Formation, TEM study and 3D reconstruction of the human erythrocyte peroxiredoxin-2 dodecahedral higher-order assembly. Micron 38:29–39. https://doi.org/10.1016/j.micron.2006.04.010

    Article  CAS  Google Scholar 

  5. Phillips AJ et al (2014) Peroxiredoxin is a versatile self-assembling tecton for protein nanotechnology. Biomacromolecules 15:1871–1881. https://doi.org/10.1021/bm500261u

    Article  CAS  Google Scholar 

  6. Radjainia M et al (2015) Cryo-electron microscopy structure of human peroxiredoxin-3 filament reveals the assembly of a putative chaperone. Structure 23:912–920. https://doi.org/10.1016/j.str.2015.03.019

    Article  CAS  Google Scholar 

  7. Yewdall NA et al (2016) Structures of human peroxiredoxin 3 suggest self-chaperoning assembly that maintains catalytic state. Structure 24:1120–1129. https://doi.org/10.1016/j.str.2016.04.013

    Article  CAS  Google Scholar 

  8. Saccoccia F et al (2012) Moonlighting by different stressors: crystal structure of the chaperone species of a 2-Cys peroxiredoxin. Structure 20:429–439. https://doi.org/10.1016/j.str.2012.01.004

    Article  CAS  Google Scholar 

  9. Domigan LJ et al (2017) Formation of supramolecular protein structures on gold surfaces. Biointerphases 12:04E405. https://doi.org/10.1116/1.4986053

    Article  CAS  Google Scholar 

  10. Yewdall NA, Allison TM, Pearce FG, Robinson CV, Gerrard JA (2018) Self-assembly of toroidal proteins explored using native mass spectrometry. Chem Sci 9(28):6099–6106

    Article  CAS  Google Scholar 

  11. Yewdall NA, Peskin AV, Hampton MB, Goldstone DC, Pearce FG, Gerrard JA (2018) Quaternary structure influences the peroxidase activity of peroxiredoxin 3. Biochem Biophys Res Commun 497:558–563. https://doi.org/10.1016/j.bbrc.2018.02.093

    Article  CAS  Google Scholar 

  12. Cox AG, Peskin AV, Paton LN, Winterbourn CC, Hampton MB (2009) Redox potential and peroxide reactivity of human peroxiredoxin 3. Biochemistry 48:6495–6501. https://doi.org/10.1021/bi900558g

    Article  CAS  Google Scholar 

  13. Hall A, Sankaran B, Poole LB, Karplus PA (2009) Structural changes common to catalysis in the Tpx peroxiredoxin subfamily. J Mol Biol 393:867–881

    Article  CAS  Google Scholar 

  14. Angelucci F et al (2013) Switching between the alternative structures and functions of a 2-Cys peroxiredoxin, by site-directed mutagenesis. J Mol Biol 425:4556–4568

    Article  CAS  Google Scholar 

  15. Conroy F, Rossi T, Ashmead H, Crowther JM, Mitra AK, Gerrard JA (2019) Engineering peroxiredoxin 3 to facilitate control over self-assembly. Biochem Biophys Res Commun 512(2):263–268

    Article  CAS  Google Scholar 

  16. Parsonage D, Youngblood DS, Sarma GN, Wood ZA, Karplus PA, Poole LB (2005) Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin. Biochemistry 44:10583–10592. https://doi.org/10.1021/bi050448i

    Article  CAS  Google Scholar 

  17. Laer KV, Dick TP (2016) Utilizing natural and engineered peroxiredoxins as intracellular peroxide reporters. Mol Cells 39:46–52

    Article  Google Scholar 

  18. Ardini M et al (2014) Metal-induced self-assembly of peroxiredoxin as a tool for sorting ultrasmall gold nanoparticles into one-dimensional clusters. Nanoscale 6:8052–8061. https://doi.org/10.1039/c4nr01526f

    Article  CAS  Google Scholar 

  19. Manuguri S, Webster K, Yewdall NA, An Y, Venugopal H, Bhugra V, Turner A, Domigan LJ, Gerrard JA, Williams DE, Malmström J (2018) Assembly of protein stacks with in situ synthesized nanoparticle cargo. Nano Lett 18(8):5138–5145

    Article  CAS  Google Scholar 

  20. Ardini M et al (2016) Supramolecular self-assembly of graphene oxide and metal nanoparticles into stacked multilayers by means of a multitasking protein ring. Nanoscale 8:6739–6753. https://doi.org/10.1039/C5NR08632A

    Article  CAS  Google Scholar 

  21. Blommel PG, Fox BG (2007) A combined approach to improving large-scale production of tobacco etch virus protease. Protein Expr Purif 55:53–68. https://doi.org/10.1016/j.pep.2007.04.013

    Article  CAS  Google Scholar 

  22. Laue TM, Shah BD, Ridgeway TM, Pelletier SL (1992) Computer-aided interpretation of analytical sedimentation data for proteins. In: Harding SE, Rowe AJ, Horton JC (eds) Analytical ultracentrifugation in biochemistry and polymer science. The Royal Society of Chemistry, Cambridge, pp 90–125

    Google Scholar 

  23. Schuck P, Rossmanith P (2000) Determination of the sedimentation coefficient distribution by least-squares boundary modeling. Biopolymers 54:328–341. https://doi.org/10.1002/1097-0282(20001015)54:5<328::AID-BIP40>3.0.CO;2-P

    Article  CAS  Google Scholar 

  24. Khoshouei M et al (2016) Volta phase plate cryo-EM of the small protein complex Prx3. Nat Commun 7:10534. https://doi.org/10.1038/ncomms10534

    Article  CAS  Google Scholar 

  25. Knoops B, Loumaye E, Van Der Eecken V (2007) Evolution of the peroxiredoxins. Subcell Biochem 44:27–40

    Article  Google Scholar 

  26. Soito L, Williamson C, Knutson ST, Fetrow JS, Poole LB, Nelson KJ (2011) PREX: PeroxiRedoxin classification indEX, a database of subfamily assignments across the diverse peroxiredoxin family. Nucleic Acids Res 39:D332–D337. https://doi.org/10.1093/nar/gkq1060

    Article  CAS  Google Scholar 

  27. Flohé L, Harris JR (2007) Peroxiredoxin systems: structures and functions. Springer, Dordrecht

    Book  Google Scholar 

  28. Claiborne A (1985) Catalase activity. In: Greenwald AR (ed) Handbook of methods for oxygen radical research. CRC Press Inc., Boca Raton, pp 283–284

    Google Scholar 

  29. Hayat MA (1981) In: Arnold E (ed) Principles and techniques of electron microscopy. Biological applications, 4th edn. Cambridge University Press, Cambridge

    Google Scholar 

  30. Bozzola JJ, Russell LD (1999) Electron microscopy: principles and techniques for biologists. Jones & Bartlett Learning, Sudbury

    Google Scholar 

  31. Robinson DG, Ehlers U, Herken R, Herrmann B, Mayer F, Schürmann F-W (2012) Methods of preparation for electron microscopy: an introduction for the biomedical sciences. Springer Science & Business Media, Berlin, Heidelberg

    Google Scholar 

  32. Nagy P et al (2011) Model for the exceptional reactivity of peroxiredoxins 2 and 3 with hydrogen peroxide–a kinetic and computational study. J Biol Chem 286:18048–18055. https://doi.org/10.1074/jbc.M111.232355

    Article  CAS  Google Scholar 

  33. Poynton RA, Peskin AV, Haynes AC, Lowther WT, Hampton MB, Winterbourn CC (2016) Kinetic analysis of structural influences on the susceptibility of peroxiredoxins 2 and 3 to hyperoxidation. Biochem J 473:411–421. https://doi.org/10.1042/BJ20150572

    Article  CAS  Google Scholar 

  34. Yewdall NA (2017) Human peroxiredoxin 3: the shape-shifting peroxidase as a versatile protein tecton. University of Canterbury, Christchurch

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Amy Yewdall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Conroy, F., Yewdall, N.A. (2020). Peroxiredoxin Proteins as Building Blocks for Nanotechnology. In: Gerrard, J., Domigan, L. (eds) Protein Nanotechnology. Methods in Molecular Biology, vol 2073. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9869-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9869-2_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9868-5

  • Online ISBN: 978-1-4939-9869-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics