Skip to main content

Preparation of Proteins and Macromolecular Assemblies for Cryo-electron Microscopy

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2073))

Abstract

Cryo-electron microscopy has become popular as the penultimate step on the road to structure determination for many proteins and macromolecular assemblies. The process of obtaining high-resolution images of a purified biomolecular complex in an electron microscope often follows a long, and in many cases exhaustive screening process in which many iterative rounds of protein purification are employed and the sample preparation procedure progressively re-evaluated in order to improve the distribution of particles visualized under the electron microscope, and thus maximize the opportunity for high-resolution structure determination. Typically, negative stain electron microscopy is employed to obtain a preliminary assessment of the sample quality, followed by cryo-EM which first requires the identification of optimal vitrification conditions. The original methods for frozen-hydrated specimen preparation developed over 40 years ago still enjoy widespread use today, although recent developments have set the scene for a future where more systematic and high-throughput approaches to the preparation of vitrified biomolecular complexes may be routinely employed. Here we summarize current approaches and ongoing innovations for the preparation of frozen-hydrated single particle specimens for cryo-EM, highlighting some of the commonly encountered problems and approaches that may help overcome these.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ruska H, Borries BY, Ruska E (1939) Die Bedeutung der Ubermikrokopie fur die Virusforschung. Arch Gesanch Virusforsh 1:155–169

    Article  Google Scholar 

  2. Luria SE, Delbruck M, Anderson TF (1943) Electron microscope studies of bacterial viruses. J Bacteriol 46(1):57–77

    Article  CAS  Google Scholar 

  3. Brenner S, Horne RW (1959) A negative staining method for high resolution electron microscopy of viruses. Biochim Biophys Acta 34:103–110. https://doi.org/10.1016/0006-3002(59)90237-9

    Article  CAS  Google Scholar 

  4. Bremer A, Henn C, Engel A, Baumeister W, Aebi U (1992) Has negative staining still a place in biomacromolecular electron microsocpy? Ultamicroscopy 46(1–4):85–111

    Article  CAS  Google Scholar 

  5. Scarff CA, Fuller MJG, Thompson RF, Iadaza MG (2018) Variations on negative stain electron microscopy methods: tools for tackling challenging systems. J Vis Exp 132. https://doi.org/10.3791/57199

  6. Frank J (1996) Electron microscopy of macromolecular assemblies. In: Three-dimensional electron microscopy of macromolecular assemblies, vol 1. Science Direct, Academic, Cambridge, MA, pp 12–53

    Chapter  Google Scholar 

  7. Dubochet J, Chang JJ, Freeman R, Lepault J, McDowall AW (1982) Frozen aqueous suspensions. Ultramicroscopy 10(1–2):55–62. https://doi.org/10.1016/0304-3991(82)90187-5

    Article  Google Scholar 

  8. Taylor KA, Glaeser RM (1976) Electron microscopy of frozen hydrated biological specimens. J Ultra Mol Struct Res 55:448–456

    Article  CAS  Google Scholar 

  9. Dubochet J, Adrian M, Chang JJ, Homo JC, Lepault J, McDowall AW, Schultz P (1988) Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 21(2):129–228

    Article  CAS  Google Scholar 

  10. Adrian M, Dubochet J, Lepault J, McDowall AW (1984) Cryo-electron microscopy of viruses. Nature 308:32–36. https://doi.org/10.1038/308032a0

    Article  CAS  Google Scholar 

  11. Downing KH, McCartney MR, Glaeser RM (2004) Experimental characterization and mitigation of specimen charging on thin films with one conducting layer. Microsc Microanal 10(06):783–789. https://doi.org/10.1017/s143192760404067x

    Article  CAS  Google Scholar 

  12. Glaeser RM, Downing KH (2004) Specimen charging on thin films with one conducting layer: discussion of physical principles. Microsc Microanal 10(06):790–796. https://doi.org/10.1017/s1431927604040668

    Article  CAS  Google Scholar 

  13. Brink J, Gross H, Tittmann P, Sherman MB, Chiu W (1998) Reduction of charging in protein electron cryomicroscopy. J Microsc 191(1):67–73

    Article  CAS  Google Scholar 

  14. Brink J, Sherman MB, Berriman J, Chiu W (1998) Evalution of charging on macromolecules in electron cryomicroscopy. Ultamicroscopy 72(1–2):41–52

    Article  CAS  Google Scholar 

  15. Karuppasamy M, Karimi Nejadasl F, Vulovic M, Koster AJ, Ravelli RB (2011) Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate. J Synchrotron Radiat 18(3):398–412. https://doi.org/10.1107/S090904951100820X

    Article  CAS  Google Scholar 

  16. Glaeser RM (2008) Retrospective: radiation damage and its associated “information limitations”. J Struct Biol 163(3):271–276. https://doi.org/10.1016/j.jsb.2008.06.001

    Article  CAS  Google Scholar 

  17. Henderson R, Glaeser RM (1985) Quantitative analysis of image contrast in electron micrographs of beam-sensitive crystals. Ultamicroscopy 16(2):139–150

    Article  CAS  Google Scholar 

  18. Chiu W, Downing KH, Dubochet J, Glaeser RM, Heide HG, Knapek E, Kopf D, Lamvik MK, Lepault J, Robertson JD, Zemlin F (1987) Cryoprotection in electron microscopy. J Microsc 141(3):385–391

    Google Scholar 

  19. Carlson DB, Evans JE (2012) Low-dose imaging techniques for transmission electron microscopy. In: Khan M (ed) The transmission electron microscope, vol 1. InTech

    Google Scholar 

  20. Sun J, Li H (2010) How to operate a cryo-electron microscope. In: Cryo-EM part A sample preparation and data collection. Methods Enzymol 481:231–249. https://doi.org/10.1016/S0076-6879(10)81010-9

    Article  CAS  Google Scholar 

  21. Vinothkumar KR, Henderson R (2016) Single particle electron cryomicroscopy: trends, issues and future perspective. Q Rev Biophys 49:e13. https://doi.org/10.1017/S0033583516000068

    Article  Google Scholar 

  22. Isakozawa S, Nagaoki I, Watabe A, Nagakubo Y, Saito N, Matsumoto H, Zhang XF, Taniguchi Y, Baba N (2016) Design of a 300-kV gas environmental transmission electron microscope equipped with a cold field emission gun. Microscopy (Oxf) 65(4):353–362. https://doi.org/10.1093/jmicro/dfw015

    Article  Google Scholar 

  23. Kohno Y, Okunishi E, Tomita T, Ishikawa I, Kaneyama T, Ohkura Y, Kondo Y, Isabell TC (2010) Development of a cold field-emission gun for a 200kV atomic resolution electron microscope. Microsc Microanal 27(7):S9–S13

    Google Scholar 

  24. Grimm R, Typke D, Baumeister W (1998) Improving image quality by zero-loss energy filtering: quantitative assessment by menas of image cross-correlation. J Microsc 190(3):339–349

    Article  Google Scholar 

  25. Grogger W, Varela M, Ristau R, Schaffer B, Hofer F, Krishnan KM (2005) Energy-filtering transmission electron microscopy on the nanometer length scale. J Electron Spectrosc Relat Phenom 143(2–3):139–147. https://doi.org/10.1016/j.elspec.2004.09.028

    Article  CAS  Google Scholar 

  26. Gubbens A, Barfels M, Trevor C, Twesten R, Mooney P, Thomas PJ, Menon N, Kraus B, Mao C, McGinn B (2010) The GIF quantum, a next generation post-column imaging energy filter. Ultramicroscopy 110(8):962–970. https://doi.org/10.1016/j.ultramic.2010.01.009

    Article  CAS  Google Scholar 

  27. Rhinow D, Buenfeld M, Weber NE, Beyer A, Golzhauser A, Kuhlbrandt W, Hampp N, Turchanin A (2011) Energy-filtered transmission electron microscopy of biological samples on highly transparent carbon nanomembranes. Ultramicroscopy 111(5):342–349. https://doi.org/10.1016/j.ultramic.2011.01.028

    Article  Google Scholar 

  28. Schroder RR, Hofmann W, Menetret JF (1990) Zero-loss energy filtering as improved imaging mode in cryoelectronmicroscopy of frozen-hydrated specimens. J Struct Biol 105(1–3):28–34

    Article  Google Scholar 

  29. Tsuno K (2004) Evaluation of in-column energy filters for analytical electron microscopes. Nucl Instrum Methods 519(1–2):286–296. https://doi.org/10.1016/j.nima.2003.11.165

    Article  CAS  Google Scholar 

  30. Danev R, Baumeister W (2016) Cryo-EM single particle analysis with the volta phase plate. elife 5. https://doi.org/10.7554/eLife.13046

  31. Nagayama K, Danev R (2008) Phase contrast electron microscopy: development of thin-film phase plates and biological applications. Philos Trans R Soc Lond Ser B Biol Sci 363(1500):2153–2162. https://doi.org/10.1098/rstb.2008.2268

    Article  CAS  Google Scholar 

  32. McMullan G, Faruqi AR, Clare D, Henderson R (2014) Comparison of optimal performance at 300 keV of three direct electron detectors for use in low dose electron microscopy. Ultramicroscopy 147:156–163. https://doi.org/10.1016/j.ultramic.2014.08.002

    Article  CAS  Google Scholar 

  33. McMullan G, Faruqi AR, Henderson R, Guerrini N, Turchetta R, Jacobs A, van Hoften G (2009) Experimental observation of the improvement in MTF from backthinning a CMOS direct electron detector. Ultramicroscopy 109(9):1144–1147. https://doi.org/10.1016/j.ultramic.2009.05.005

    Article  CAS  Google Scholar 

  34. Ruskin RS, Yu Z, Grigorieff N (2013) Quantitative characterization of electron detectors for transmission electron microscopy. J Struct Biol 184(3):385–393. https://doi.org/10.1016/j.jsb.2013.10.016

    Article  CAS  Google Scholar 

  35. Brilot AF, Chen JZ, Cheng A, Pan J, Harrison SC, Potter CS, Carragher B, Henderson R, Grigorieff N (2012) Beam-induced motion of vitrified specimen on holey carbon film. J Struct Biol 177(3):630–637. https://doi.org/10.1016/j.jsb.2012.02.003

    Article  CAS  Google Scholar 

  36. Moreau MJJ, Morin I, Askin SP, Cooper A, Moreland NJ, Vasudevan SG, Schaeffer PM (2012) Rapid determination of protein stability and ligand binding by differential scanning fluorimetry of GFP-tagged proteins. RSC Adv 2(31). https://doi.org/10.1039/c2ra22368f

  37. Ericsson UB, Hallberg BM, Detitta GT, Dekker N, Nordlund P (2006) Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal Biochem 357(2):289–298. https://doi.org/10.1016/j.ab.2006.07.027

    Article  CAS  Google Scholar 

  38. Chari A, Haselbach D, Kirves JM, Ohmer J, Paknia E, Fischer N, Ganichkin O, Moller V, Frye JJ, Petzold G, Jarvis M, Tietzel M, Grimm C, Peters JM, Schulman BA, Tittmann K, Markl J, Fischer U, Stark H (2015) ProteoPlex: stability optimization of macromolecular complexes by sparse-matrix screening of chemical space. Nat Methods 12(9):859–865. https://doi.org/10.1038/nmeth.3493

    Article  CAS  Google Scholar 

  39. He Y, Fang J, Taatjes DJ, Nogales E (2013) Structural visualization of key steps in human transcription initiation. Nature 495(7442):481–486. https://doi.org/10.1038/nature11991

    Article  CAS  Google Scholar 

  40. Monroe N, Han H, Shen PS, Sundquist WI, Hill CP (2017) Structural basis of protein translocation by the Vps4-Vta1 AAA ATPase. elife 6. https://doi.org/10.7554/eLife.24487

  41. Kastner B, Fischer N, Golas MM, Sander B, Dube P, Boehringer D, Hartmuth K, Deckert J, Hauer F, Wolf E, Uchtenhagen H, Urlaub H, Herzog F, Peters JM, Poerschke D, Luhrmann R, Stark H (2008) GraFix: sample preparation for single-particle electron cryomicroscopy. Nat Methods 5(1):53–55. https://doi.org/10.1038/nmeth1139

    Article  CAS  Google Scholar 

  42. Stark H (2010) GraFix: stabilization of fragile macromolecular complexes for single particle cryo-EM. Methos Enzymol 481:109–126. https://doi.org/10.1016/s0076-6879(10)81005-5

    Article  CAS  Google Scholar 

  43. Singh SK, Sigworth FJ (2015) Cryo-EM: spinning the micelles away. Structure 23(9):1561. https://doi.org/10.1016/j.str.2015.08.001

    Article  CAS  Google Scholar 

  44. Hauer F, Gerle C, Fischer N, Oshima A, Shinzawa-Itoh K, Shimada S, Yokoyama K, Fujiyoshi Y, Stark H (2015) GraDeR: membrane protein complex preparation for single-particle cryo-EM. Structure 23(9):1769–1775. https://doi.org/10.1016/j.str.2015.06.029

    Article  CAS  Google Scholar 

  45. Gewering T, Januliene D, Ries AB, Moeller A (2018) Know your detergents: a case study on detergent background in negative stain electron microscopy. J Struct Biol 203(3):242–246. https://doi.org/10.1016/j.jsb.2018.05.008

    Article  CAS  Google Scholar 

  46. Tribet C, Mills DJ, Haider M, Popot J-L (1998) Scanning transmission electron microscopy study of the molecular mass of amphipol/cytochrome b6f complexes. Biochimie 80(5–6):475–482. https://doi.org/10.1016/S0300-9084(00)80014-0

    Article  CAS  Google Scholar 

  47. Popot J-L (2018) The use of amphipols for electron microscopy. In: Membrane proteins in aqueous solutions: from detergents to amphipols. Springer, Cham. https://doi.org/10.1007/978-3-319-73148-3_12

    Chapter  Google Scholar 

  48. Liao M, Cao E, Julius D, Cheng Y (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504(7478):107–112. https://doi.org/10.1038/nature12822

    Article  CAS  Google Scholar 

  49. Gao Y, Cao E, Julius D, Cheng Y (2016) TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534(7607):347–351. https://doi.org/10.1038/nature17964

    Article  CAS  Google Scholar 

  50. Civjan NR, Bayburt TH, Schuler MA, Sligar SG (2003) Direct solubilization of heterologously expressed membrane proteins by incorporation into nanoscale lipid bilayers. BioTechniques 35(3):556–560

    Article  CAS  Google Scholar 

  51. Bayburt TH, Carlson JW, Sligar SG (1998) Reconstitution and imaging of a membrane protein in a nanometer-size phospholipid bilayer. J Struct Biol 123(1):37–44

    Article  CAS  Google Scholar 

  52. Machen AJ, Akkaladevi N, Trecazzi C, O’Neil PT, Mukherjee S, Qi Y, Dillard R, Im W, Gogol EP, White TA, Fisher MT (2017) Asymmetric cryo-EM structure of anthrax toxin protective antigen pore with lethal factor N-terminal domain. Toxins (Basel) 9(10):E298. https://doi.org/10.3390/toxins9100298

    Article  CAS  Google Scholar 

  53. Zhang S, Li N, Zeng W, Gao N, Yang M (2017) Cryo-EM structures of the mammalian endo-lysosomal TRPML1 channel elucidate the combined regulation mechanism. Protein Cell 8(11):834–847. https://doi.org/10.1007/s13238-017-0476-5

    Article  CAS  Google Scholar 

  54. Martinez D, Decossas M, Kowal J, Frey L, Stahlberg H, Dufourc EJ, Riek R, Habenstain B, Bibow S, Loquet A (2017) Lipid internal dynamics probed in nanodiscs. ChemPhysChem 18(19):2651–2657. https://doi.org/10.1002/cphc.201700450

    Article  CAS  Google Scholar 

  55. Stam NJ, Wilkens S (2017) Structure of the lipid nanodisc-reconstituted vacuolar ATPase proton channel: definition of the interaction of rotor and stator and implication for enzyme regulation by reversible dissociation. J Biol Chem 292(5):1749–1761. https://doi.org/10.1074/jbc.M116.766790

    Article  CAS  Google Scholar 

  56. Gatsogiannis C, Merino F, Prumbaum D, Roderer D, Leidreiter F, Meusch D, Raunser S (2016) Membrane insertion of a Tc toxin in near-atomic detail. Nat Struct Mol Biol 23(10):884–890. https://doi.org/10.1038/nsmb.3281

    Article  CAS  Google Scholar 

  57. Frauenfeld J, Loving R, Armache JP, Sonnen AF, Guettou F, Moberg P, Zhu L, Jegerschold C, Flayhan A, Briggs JA, Garoff H, Low C, Cheng Y, Nordlund P (2016) A saposin-lipoprotein nanoparticle system for membrane proteins. Nat Methods 13(4):345–351. https://doi.org/10.1038/nmeth.3801

    Article  CAS  Google Scholar 

  58. Lee SC, Knowles TJ, Postis VL, Jamshad M, Parslow RA, Lin YP, Goldman A, Sridhar P, Overduin M, Muench SP, Dafforn TR (2016) A method for detergent-free isolation of membrane proteins in their local lipid environment. Nat Protoc 11(7):1149–1162. https://doi.org/10.1038/nprot.2016.070

    Article  CAS  Google Scholar 

  59. Thompson RF, Walker M, Siebert CA, Muench SP, Ranson NA (2016) An introduction to sample preparation and imaging by cryo-electron microscopy for structural biology. Methods 100:3–15. https://doi.org/10.1016/j.ymeth.2016.02.017

    Article  CAS  Google Scholar 

  60. Marlon L (1976) Early application of electron microscopy to biology. Ultamicroscopy 1:281–296

    Article  Google Scholar 

  61. Bradley DE (1954) Evaporated carbon films for use in electron microscopy. Br J Appl Phys 5:65

    Article  Google Scholar 

  62. Russo CJ, Passmore LA (2016) Progress towards an optimal specimen support for electron cryomicroscopy. Curr Opin Struct Biol 37:81–89. https://doi.org/10.1016/j.sbi.2015.12.007

    Article  CAS  Google Scholar 

  63. Tivol WF, Briegel A, Jensen GJ (2008) An improved cryogen for plunge freezing. Microsc Microanal 14(5):375–379. https://doi.org/10.1017/S1431927608080781

    Article  CAS  Google Scholar 

  64. Dobro MJ, Melanson LA, Jensen GJ, McDowall AW (2010) Plunge freezing for electron cryomicroscopy. Methods Enzymol 481:63–82. https://doi.org/10.1016/s0076-6879(10)81003-1

    Article  CAS  Google Scholar 

  65. Trurnit HJ (1960) A theory and method for the spreading of protein monolayers. J Colloid Sci 15(1):1–13

    Article  CAS  Google Scholar 

  66. Glaeser RM, Han BG, Csencsits R, Killilea A, Pulk A, Cate JH (2016) Factors that influence the formation and stability of thin, cryo-EM specimens. Biophys J 110(4):749–755. https://doi.org/10.1016/j.bpj.2015.07.050

    Article  CAS  Google Scholar 

  67. Kemmerling S, Ziegler J, Schweighauser G, Arnold SA, Giss D, Muller SA, Ringler P, Goldie KN, Goedecke N, Hierlemann A, Stahlberg H, Engel A, Braun T (2012) Connecting mu-fluidics to electron microscopy. J Struct Biol 177(1):128–134. https://doi.org/10.1016/j.jsb.2011.11.001

    Article  CAS  Google Scholar 

  68. Isabell TC, Fischione PE, O’Keefe C, Guruz MU, Dravid VP (1999) Plasma cleaning and its applications for electron microscopy. Microsc Microanal 5(2):126–135. https://doi.org/10.1017/S1431927699000094

    Article  CAS  Google Scholar 

  69. Quispe J, Damiano J, Mick SE, Nackashi DP, Fellmann D, Ajero TG, Carragher B, Potter CS (2007) An improved holey carbon film for cryo-electron microscopy. Microsc Microanal 13(5):365–371. https://doi.org/10.1017/S1431927607070791

    Article  CAS  Google Scholar 

  70. Russo CJ, Passmore LA (2014) Controlling protein adsorption on graphene for cryo-EM using low-energy hydrogen plasmas. Nat Methods 11(6):649–652. https://doi.org/10.1038/nmeth.2931

    Article  CAS  Google Scholar 

  71. Grassucci RA, Taylor DJ, Frank J (2007) Preparation of macromolecular complexes for cryo-electron microscopy. Nat Protoc 2(12):3239–3246. https://doi.org/10.1038/nprot.2007.452

    Article  CAS  Google Scholar 

  72. Frank J (1996) Introduction. In: Three-dimensional electron microscopy of macromolecular assemblies, vol 1. Science Direct, Academic, Cambridge, MA, pp 1–11

    Google Scholar 

  73. Sauerwald A, Sandin S, Cristofari G, Scheres SHW, Lingner J, Rhodes D (2013) Structure of active dimeric human telomerase. Nat Struct Mol Biol 20(4):454–460. https://doi.org/10.1038/nsmb.2530

    Article  CAS  Google Scholar 

  74. Chen PH, Unger V, He X (2015) Structure of full-length human PDGFRbeta bound to its activating ligand PDGF-B as determined by negative-stain electron microscopy. J Mol Biol 427(24):3921–3934. https://doi.org/10.1016/j.jmb.2015.10.003

    Article  CAS  Google Scholar 

  75. Tegunov D, Cramer P (2018) Real-time cryo-EM data pre-processing with Warp. BioRxiv. https://doi.org/10.1101/338558

  76. Reboul CF, Kiesewetter S, Eager M, Belousoff M, Cui T, De Sterck H, Elmlund D, Elmlund H (2018) Rapid near-atomic resolution single-particle 3D reconstruction with SIMPLE. J Struct Biol. https://doi.org/10.1016/j.jsb.2018.08.005

  77. Penczek PA, Radermacher M, Frank J (1992) Three-dimensional reconstruction of single particles embedded in ice. Ultamicroscopy 40(1):33–53. https://doi.org/10.1016/0304-3991(92)90233-A

    Article  CAS  Google Scholar 

  78. Frank J (1996) Three-dimensional reconstruction. In: Three-dimensional electron microscopy of macromolecular assemblies, vol 1. Science Direct, Academic, Cambridge, MA

    Google Scholar 

  79. D’Imprima E, Floris D, Joppe M, Sánchez R, Grininger M, Kühlbrandt W (2018) The deadly touch: protein denaturation at the water-air interface and how to prevent it. BioRxiv. https://doi.org/10.1101/400432

  80. Noble AJ, Wei H, Dandey VP, Zhang Z, Potter CS, Carragher B (2018) Reducing effects of particle adsorption to the air-water interface in cryoEM. BioRxiv. https://doi.org/10.1101/288340

  81. Raffaini G, Ganazzoli F (2010) Protein adsorption on a hydrophobic surface: a molecular dynamics study of lysozyme on graphite. Langmuir 26(8):5679–5689. https://doi.org/10.1021/la903769c

    Article  CAS  Google Scholar 

  82. Glaeser RM (2018) Proteins, interfaces, and cryo-Em grids. Curr Opin Colloid Interface Sci 34:1–8. https://doi.org/10.1016/j.cocis.2017.12.009

    Article  CAS  Google Scholar 

  83. Glaeser RM, Han BG (2017) Opinion: hazards faced by macromolecules when confined to thin aqueous films. Biophys Rep 3(1):1–7. https://doi.org/10.1007/s41048-016-0026-3

    Article  CAS  Google Scholar 

  84. Taylor KA, Glaeser RM (2008) Retrospective on the early development of cryoelectron microscopy of macromolecules and a prospective on opportunities for the future. J Struct Biol 163(3):214–223. https://doi.org/10.1016/j.jsb.2008.06.004

    Article  CAS  Google Scholar 

  85. Schwalbe H, Fiebig KM, Buck M, Jones AJ, Grimshaw SB, Spencer A, Glaser SJ, Smith LJ, Dobson CM (1997) Structural and dynamical properties of a denaturated protein. Heteronuclear 3D NMR experiments and theoretical simulation of lysozyme in 8 M Urea. Biochemist 36:8977–8991

    Article  CAS  Google Scholar 

  86. Agard DA, Cheng Y, Glaeser RM, Subramaniam S (2014) Single-particle cryo-electron microscopy (Cryo-EM): progress, challenges and prespectives for further improvement. Adv Imag Electron Phys 185:113–137. https://doi.org/10.1016/b978-0-12-800144-8.00002-1

    Article  Google Scholar 

  87. Tabor RF, Manica R, Chan DY, Grieser F, Dagastine RR (2011) Repulsive van der Waals forces in soft matter: why bubbles do not stick to walls. Phys Rev Lett 106(6):064501. https://doi.org/10.1103/PhysRevLett.106.064501

    Article  CAS  Google Scholar 

  88. Jensen GJ, Kornberg RD (2000) Defocus-gradient corrected back-projection. Ultramicroscopy 84(1–2):57–64. https://doi.org/10.1016/S0304-3991(00)00005-X

    Article  CAS  Google Scholar 

  89. Tan YZ, Aiyer S, Mietzsch M, Hull JA, McKenna R, Grieger J, Samulski RJ, Baker TS, Agbandje-McKenna M, Lyumkis D (2018) Sub-2 Å Ewald curvature corrected single-particle cryo-EM. https://doi.org/10.1101/305599

  90. Cavadini S, Fischer ES, Bunker RD, Potenza A, Lingaraju GM, Goldie KN, Mohamed WI, Faty M, Petzold G, Beckwith RE, Tichkule RB, Hassiepen U, Abdulrahman W, Pantelic RS, Matsumoto S, Sugasawa K, Stahlberg H, Thoma NH (2016) Cullin-RING ubiquitin E3 ligase regulation by the COP9 signalosome. Nature 531(7596):598–603. https://doi.org/10.1038/nature17416

    Article  CAS  Google Scholar 

  91. Bokori-Brown M, Martin TG, Naylor CE, Basak AK, Titball RW, Savva CG (2016) Cryo-EM structure of lysenin pore elucidates membrane insertion by an aerolysin family protein. Nat Commun 7:11293. https://doi.org/10.1038/ncomms11293

    Article  CAS  Google Scholar 

  92. Rhinow D, Kuhlbrandt W (2008) Electron cryo-microscopy of biological specimens on conductive titanium-silicon metal glass films. Ultramicroscopy 108(7):698–705. https://doi.org/10.1016/j.ultramic.2007.11.005

    Article  CAS  Google Scholar 

  93. Rhinow D, Weber NE, Turchanin A, Gölzhäuser A, Kühlbrandt W (2011) Single-walled carbon nanotubes and nanocrystalline graphene reduce beam-induced movements in high-resolution electron cryo-microscopy of ice-embedded biological samples. Appl Phys Lett 99(13):133701. https://doi.org/10.1063/1.3645010

    Article  Google Scholar 

  94. Pantelic RS, Meyer JC, Kaiser U, Baumeister W, Plitzko JM (2010) Graphene oxide: a substrate for optimizing preparations of frozen-hydrated samples. J Struct Biol 170(1):152–156. https://doi.org/10.1016/j.jsb.2009.12.020

    Article  CAS  Google Scholar 

  95. Pantelic RS, Suk JW, Magnuson CW, Meyer JC, Wachsmuth P, Kaiser U, Ruoff RS, Stahlberg H (2011) Graphene: substrate preparation and introduction. J Struct Biol 174(1):234–238. https://doi.org/10.1016/j.jsb.2010.10.002

    Article  CAS  Google Scholar 

  96. Palovcak E, Wang F, Zheng SQ, Yu Z, Li S, Bulkley D, Agard DA, Cheng Y (2018) A simple and robust procedure for preparing graphene-oxide cryo-EM grids. BioRxiv. https://doi.org/10.1101/290197

  97. Pantelic RS, Fu W, Schoenenberger C, Stahlberg H (2014) Rendering graphene supports hydrophilic with non-covalent aromatic functionalization for transmission electron microscopy. Appl Phys Lett 104(13):134103

    Article  Google Scholar 

  98. Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS (2009) Control of graphene’s properties by reversible hydrogeneation evidence for graphane. Science 323(5914):610–613

    Article  CAS  Google Scholar 

  99. Wang Y-F, You Y-S, Tsai C-H, Wang L-C (2010) Production of hydrogen by plasma-reforming of methanol. Int J Hydrog Energy 35(18):9637–9640. https://doi.org/10.1016/j.ijhydene.2010.06.104

    Article  CAS  Google Scholar 

  100. Lima LM, Fu W, Jiang L, Kros A, Schneider GF (2016) Graphene-stabilized lipid monolayer heterostructures: a novel biomembrane superstructure. Nanoscale 8(44):18646–18653. https://doi.org/10.1039/c6nr05706c

    Article  CAS  Google Scholar 

  101. Levy D, Mosser AG, Lambert O, Moeck GS, Bald D, Rigaud JL (1999) Two-dimensional crystallization on lipid layer: a successful approach for membrane proteins. J Struct Biol 127(1):44–52

    Article  CAS  Google Scholar 

  102. Uzgiris EE, Kornberg RD (1983) Two-dimensional crystalisation technique for imaging macromolecules, with application to antigen-antibody-complement complexes. Nature 301:125–129

    Article  CAS  Google Scholar 

  103. Kelly DF, Dukovski D, Walz T (2010) A practical guide to the use of monolayer purification and affinity grids. Methods Enzymol 481:83–107. https://doi.org/10.1016/s0076-6879(10)81004-3

    Article  CAS  Google Scholar 

  104. Kelly DF, Dukovski D, Walz T (2008) Monolayer purification: a rapid method for isolating protein complexes for single-aprticle electron microscopy. Proc Natl Acad Sci 105(12):4703–4708

    Article  CAS  Google Scholar 

  105. Kelly DF, Abeyrathne PD, Dukovski D, Walz T (2008) The affinity grid: a pre-fabricated EM grid for monolayer purification. J Mol Biol 382(2):423–433. https://doi.org/10.1016/j.jmb.2008.07.023

    Article  CAS  Google Scholar 

  106. Kelly DF, Dukovski D, Walz T (2010) Strategy for the use of affinity grids to prepare non-His-tagged macromolecular complexes for single-particle electron microscopy. J Mol Biol 400(4):675–681. https://doi.org/10.1016/j.jmb.2010.05.045

    Article  CAS  Google Scholar 

  107. Yu G, Vago F, Zhang D, Snyder JE, Yan R, Zhang C, Benjamin C, Jiang X, Kuhn RJ, Serwer P, Thompson DH, Jiang W (2014) Single-step antibody-based affinity cryo-electron microscopy for imaging and structural analysis of macromolecular assemblies. J Struct Biol 187(1):1–9. https://doi.org/10.1016/j.jsb.2014.04.006

    Article  CAS  Google Scholar 

  108. Yu G, Li K, Jiang W (2016) Antibody-based affinity cryo-EM grid. Methods 100:16–24. https://doi.org/10.1016/j.ymeth.2016.01.010

    Article  CAS  Google Scholar 

  109. Johnson ZL, Chen J (2017) Structural basis of substrate recognition by the multidrug resistance protein MRP1. Cell 168(6):1075–1085. https://doi.org/10.1016/j.cell.2017.01.041

    Article  CAS  Google Scholar 

  110. Zhang Z, Chen J (2016) Atomic structure of the cystic fibrosis transmembrane conductance regulator. Cell 167(6):1586–1597. https://doi.org/10.1016/j.cell.2016.11.014

    Article  CAS  Google Scholar 

  111. Efremov RG, Leitner A, Aebersold R, Raunser S (2015) Architecture and conformational switch mechanism of the ryanodine receptor. Nature 517(7532):39–43. https://doi.org/10.1038/nature13916

    Article  CAS  Google Scholar 

  112. Chiu PL, Kelly DF, Walz T (2011) The use of trehalose in the preparation of specimens for molecular electron microscopy. Micron 42(8):762–772. https://doi.org/10.1016/j.micron.2011.06.005

    Article  CAS  Google Scholar 

  113. Bosch S, de Beaurepaire L, Allard M, Mosser M, Heichette C, Chretien D, Jegou D, Bach JM (2016) Trehalose prevents aggregation of exosomes and cryodamage. Sci Rep 6:36162. https://doi.org/10.1038/srep36162

    Article  CAS  Google Scholar 

  114. Arnold SA, Albiez S, Bieri A, Syntychaki A, Adaixo R, McLeod RA, Goldie KN, Stahlberg H, Braun T (2017) Blotting-free and lossless cryo-electron microscopy grid preparation from nanoliter-sized protein samples and single-cell extracts. J Struct Biol 197(3):220–226. https://doi.org/10.1016/j.jsb.2016.11.002

    Article  CAS  Google Scholar 

  115. Dandey VP, Wei H, Zhang Z, Tan YZ, Acharya P, Eng ET, Rice WJ, Kahn PA, Potter CS, Carragher B (2018) Spotiton: new features and applications. J Struct Biol 202(2):161–169. https://doi.org/10.1016/j.jsb.2018.01.002

    Article  CAS  Google Scholar 

  116. Jain T, Sheehan P, Crum J, Carragher B, Potter CS (2012) Spotiton: a prototype for an integrated inkjet dispense and vitrification system for cryo-TEM. J Struct Biol 179(1):68–75. https://doi.org/10.1016/j.jsb.2012.04.020

    Article  Google Scholar 

  117. Patwardhan A (2017) Trends in the electron microscopy data bank (EMDB). Acta Crystallogr D Struct Biol 73(6):503–508. https://doi.org/10.1107/S2059798317004181

    Article  CAS  Google Scholar 

  118. Feng X, Fu Z, Kaledhonkar S, Jia Y, Shah B, Jin A, Liu Z, Sun M, Chen B, Grassucci RA, Ren Y, Jiang H, Frank J, Lin Q (2017) A fast and effective microfluidic spraying-plunging method for high-resolution single-particle cryo-EM. Structure 25(4):663–670. https://doi.org/10.1016/j.str.2017.02.005

    Article  CAS  Google Scholar 

  119. Razinkov I, Dandey V, Wei H, Zhang Z, Melnekoff D, Rice WJ, Wigge C, Potter CS, Carragher B (2016) A new method for vitrifying samples for cryoEM. J Struct Biol 195(2):190–198. https://doi.org/10.1016/j.jsb.2016.06.001

    Article  CAS  Google Scholar 

  120. Drulyte I, Johnson RM, Hesketh EL, Hurdiss DL, Scarff CA, Porav SA, Ranson NA, Muench SP, Thompson RF (2018) Approaches to altering particle distributions in cryo-electron microscopy sample preparation. Acta Crystallogr D Struct Biol 74(6):560–571. https://doi.org/10.1107/S2059798318006496

    Article  CAS  Google Scholar 

  121. Tan YZ, Baldwin PR, Davis JH, Williamson JR, Potter CS, Carragher B, Lyumkis D (2017) Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat Methods 14(8):793–796. https://doi.org/10.1038/nmeth.4347

    Article  CAS  Google Scholar 

  122. Naydenova K, Russo CJ (2017) Measuring the effects of particle orientation to improve the efficiency of electron cryomicroscopy. Nat Commun 8(1):629. https://doi.org/10.1038/s41467-017-00782-3

    Article  CAS  Google Scholar 

  123. Glaeser RM (1992) Specimen flatness of thin crystalline arrays: influence of the substrate. Ultamicroscopy 46:33–43

    Article  CAS  Google Scholar 

  124. Booy FP, Pawley JB (1993) Cryo-crinkling: what happens to carbon films on copper grids at low temperature. Ultamicroscopy 48:273–280

    Article  CAS  Google Scholar 

  125. Glaeser RM, McMullan G, Faruqi AR, Henderson R (2011) Images of paraffin monolayer crystals with perfect contrast: minimization of beam-induced specimen motion. Ultramicroscopy 111(2):90–100. https://doi.org/10.1016/j.ultramic.2010.10.010

    Article  CAS  Google Scholar 

  126. Yoshioka C, Carragher B, Potter CS (2010) Cryomesh: a new substrate for cryo-electron microscopy. Microsc Microanal 16(1):43–53. https://doi.org/10.1017/S1431927609991310

    Article  CAS  Google Scholar 

  127. Russo CJ, Passmore LA (2014) Ultrastable gold substrates for electron cryomicroscopy. Science 346(6215):1377–1380

    Article  CAS  Google Scholar 

  128. Russo CJ, Passmore LA (2016) Ultrastable gold substrates: properties of a support for high-resolution electron cryomicroscopy of biological specimens. J Struct Biol 193(1):33–44. https://doi.org/10.1016/j.jsb.2015.11.006

    Article  CAS  Google Scholar 

  129. Meyerson JR, Rao P, Kumar J, Chittori S, Banerjee S, Pierson J, Mayer ML, Subramaniam S (2014) Self-assembled monolayers improve protein distribution on holey carbon cryo-EM supports. Sci Rep 4:7084. https://doi.org/10.1038/srep07084

    Article  Google Scholar 

  130. Martin TG, Bharat TAM, Joerger AC, Bai X, Praetorius F, Fersht AR, Dietz H, Scheres SHW (2016) Design of a molecular support for cryo-EM structure determination. Proc Natl Acad Sci 113(47):7456–7463. https://doi.org/10.1073/pnas.1612720113

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Landsberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Brillault, L., Landsberg, M.J. (2020). Preparation of Proteins and Macromolecular Assemblies for Cryo-electron Microscopy. In: Gerrard, J., Domigan, L. (eds) Protein Nanotechnology. Methods in Molecular Biology, vol 2073. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9869-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9869-2_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9868-5

  • Online ISBN: 978-1-4939-9869-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics