Skip to main content

Reconstitution of the Schizosaccharomyces pombe RNA Exosome

  • Protocol
  • First Online:
The Eukaryotic RNA Exosome

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2062))

Abstract

In this chapter, we describe methods to clone, express, purify, and reconstitute active S. pombe RNA exosomes. Reconstitution procedures are similar to methods that have been successful for the human and budding yeast exosome systems using protein subunits purified from the recombinant host E. coli. By applying these strategies, we can successfully reconstitute the S. pombe noncatalytic exosome core as well as complexes that contain the exoribonucleases Dis3 and Rrp6, cofactors Cti1 (equivalent to budding yeast Rrp47) and Mpp6 as well as the RNA helicase Mtr4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zinder JC, Lima CD (2017) Targeting RNA for processing or destruction by the eukaryotic RNA exosome and its cofactors. Genes Dev 31(2):88–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Januszyk K, Lima CD (2014) The eukaryotic RNA exosome. Curr Opin Struct Biol 24:132–140

    Article  CAS  PubMed  Google Scholar 

  3. Januszyk K, Lima CD (2011) Structural components and architectures of RNA exosomes. Adv Exp Med Biol 702:9–28

    Article  PubMed  Google Scholar 

  4. Kilchert C, Wittmann S, Vasiljeva L (2016) The regulation and functions of the nuclear RNA exosome complex. Nat Rev Mol Cell Biol 17(4):227–239

    Article  CAS  PubMed  Google Scholar 

  5. Zofall M, Grewal SI (2006) RNAi-mediated heterochromatin assembly in fission yeast. Cold Spring Harb Symp Quant Biol 71:487–496

    Article  CAS  PubMed  Google Scholar 

  6. Grewal SI (2010) RNAi-dependent formation of heterochromatin and its diverse functions. Curr Opin Genet Dev 20(2):134–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Holoch D, Moazed D (2015) RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet 16(2):71–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Buhler M, Moazed D (2007) Transcription and RNAi in heterochromatic gene silencing. Nat Struct Mol Biol 14(11):1041–1048

    Article  PubMed  Google Scholar 

  9. Lemay JF, Larochelle M, Marguerat S, Atkinson S, Bahler J, Bachand F (2014) The RNA exosome promotes transcription termination of backtracked RNA polymerase II. Nat Struct Mol Biol 21(10):919–926

    Article  CAS  PubMed  Google Scholar 

  10. Sugiyama T, Thillainadesan G, Chalamcharla VR, Meng Z, Balachandran V, Dhakshnamoorthy J, Zhou M, Grewal SIS (2016) Enhancer of rudimentary cooperates with conserved RNA-processing factors to promote meiotic mRNA decay and facultative heterochromatin assembly. Mol Cell 61(5):747–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee NN, Chalamcharla VR, Reyes-Turcu F, Mehta S, Zofall M, Balachandran V, Dhakshnamoorthy J, Taneja N, Yamanaka S, Zhou M, Grewal SI (2013) Mtr4-like protein coordinates nuclear RNA processing for heterochromatin assembly and for telomere maintenance. Cell 155(5):1061–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Egan ED, Braun CR, Gygi SP, Moazed D (2014) Post-transcriptional regulation of meiotic genes by a nuclear RNA silencing complex. RNA 20(6):867–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wasmuth EV, Zinder JC, Zattas D, Das M, Lima CD (2017) Structure and reconstitution of yeast Mpp6-nuclear exosome complexes reveals that Mpp6 stimulates RNA decay and recruits the Mtr4 helicase. elife 6:213

    Google Scholar 

  14. Schuch B, Feigenbutz M, Makino DL, Falk S, Basquin C, Mitchell P, Conti E (2014) The exosome-binding factors Rrp6 and Rrp47 form a composite surface for recruiting the Mtr4 helicase. EMBO J 33(23):2829–2846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Milligan L, Decourty L, Saveanu C, Rappsilber J, Ceulemans H, Jacquier A, Tollervey D (2008) A yeast exosome cofactor, Mpp6, functions in RNA surveillance and in the degradation of noncoding RNA transcripts. Mol Cell Biol 28(17):5446–5457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Garland W, Feigenbutz M, Turner M, Mitchell P (2013) Rrp47 functions in RNA surveillance and stable RNA processing when divorced from the exoribonuclease and exosome-binding domains of Rrp6. RNA 19(12):1659–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Buhler M, Spies N, Bartel DP, Moazed D (2008) TRAMP-mediated RNA surveillance prevents spurious entry of RNAs into the Schizosaccharomyces pombe siRNA pathway. Nat Struct Mol Biol 15(10):1015–1023

    Article  PubMed  PubMed Central  Google Scholar 

  18. Weick EM, Puno MR, Januszyk K, Zinder JC, DiMattia MA, Lima CD (2018) Helicase-dependent RNA decay illuminated by a cryo-EM structure of a human nuclear RNA exosome-MTR4 complex. Cell 173(7): 1663–1677

    Google Scholar 

  19. Mossessova E, Lima CD (2000) Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol Cell 5(5):865–876

    Article  CAS  PubMed  Google Scholar 

  20. Wood V, Harris MA, McDowall MD, Rutherford K, Vaughan BW, Staines DM, Aslett M, Lock A, Bahler J, Kersey PJ, Oliver SG (2012) PomBase: a comprehensive online resource for fission yeast. Nucleic Acids Res 40:D695–D699

    Article  CAS  PubMed  Google Scholar 

  21. McDowall MD, Harris MA, Lock A, Rutherford K, Staines DM, Bahler J, Kersey PJ, Oliver SG, Wood V (2015) PomBase 2015: updates to the fission yeast database. Nucleic Acids Res 43:D656–D661

    Article  CAS  PubMed  Google Scholar 

  22. Zinder JC, Wasmuth EV, Lima CD (2016) Nuclear RNA exosome at 3.1 A reveals substrate specificities, RNA paths, and allosteric inhibition of Rrp44/Dis3. Mol Cell 64(4):734–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wasmuth EV, Lima CD (2012) Exo- and endoribonucleolytic activities of yeast cytoplasmic and nuclear RNA exosomes are dependent on the noncatalytic core and central channel. Mol Cell 48(1):133–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wasmuth EV, Januszyk K, Lima CD (2014) Structure of an Rrp6-RNA exosome complex bound to poly(A) RNA. Nature 511(7510):435–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu Q, Greimann JC, Lima CD (2006) Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell 127(6):1223–1237

    Article  CAS  PubMed  Google Scholar 

  26. Feigenbutz M, Jones R, Besong TM, Harding SE, Mitchell P (2013) Assembly of the yeast exoribonuclease Rrp6 with its associated cofactor Rrp47 occurs in the nucleus and is critical for the controlled expression of Rrp47. J Biol Chem 288(22):15959–15970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Feigenbutz M, Garland W, Turner M, Mitchell P (2013) The exosome cofactor Rrp47 is critical for the stability and normal expression of its associated exoribonuclease Rrp6 in Saccharomyces cerevisiae. PLoS One 8(11):e80752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stead JA, Costello JL, Livingstone MJ, Mitchell P (2007) The PMC2NT domain of the catalytic exosome subunit Rrp6p provides the interface for binding with its cofactor Rrp47p, a nucleic acid-binding protein. Nucleic Acids Res 35(16):5556–5567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Lima Lab members for advice during the course of this work and Fangyu Liu for her contributions to reconstituting S. pombe exosomes. This work was supported in part by GM079196 and GM118080 (NIH/NIGMS, C.D.L) and P30CA008748 (NIH/National Cancer Institute). The content is the authors’ responsibility and does not represent the official views of the NIH. C.D.L is a Howard Hughes Medical Institute Investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher D. Lima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Januszyk, K., Lima, C.D. (2020). Reconstitution of the Schizosaccharomyces pombe RNA Exosome. In: LaCava, J., Vaňáčová, Š. (eds) The Eukaryotic RNA Exosome. Methods in Molecular Biology, vol 2062. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9822-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9822-7_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9821-0

  • Online ISBN: 978-1-4939-9822-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics