Skip to main content

Thiouridine-to-Cytidine Conversion Sequencing (TUC-Seq) to Measure mRNA Transcription and Degradation Rates

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2062))

Abstract

The study of RNA dynamics, specifically RNA transcription and decay rates, has gained increasing attention in recent years because various mechanisms have been discovered that affect mRNA half-life, thereby ultimately controlling protein output. Therefore, there is a need for methods enabling minimally invasive, simple and high-throughput determination of RNA stability that can be applied to determine RNA transcription and decay rates in cells and organisms. We have recently developed a protocol which we named TUC-seq to directly distinguish newly synthesized transcripts from the preexisting pool of transcripts by metabolic labeling of nascent RNAs with 4-thiouridine (4sU) followed by osmium tetroxide-mediated conversion of 4sU to cytidine (C) and direct sequencing. In contrast to other related methods (SLAM-seq, TimeLapse-seq), TUC-seq converts 4sU to a native C instead of an alkylated or otherwise modified nucleoside derivative. TUC-seq can be applied to any cell type that is amenable to 4sU labeling. By employing different labeling strategies (pulse or pulse-chase labeling), it is suitable for a broad field of applications and provides a fast and highly efficient means to determine mRNA transcription and decay rates.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Pérez-Ortín JE, Alepuz P, Chávez S, Choder M (2013) Eukaryotic mRNA decay: methodologies, pathways, and links to other stages of gene expression. J Mol Biol 425:3750–3775

    Article  PubMed  Google Scholar 

  2. Pérez-Ortín JE, Medina DA, Chávez S, Moreno J (2013) What do you mean by transcription rate? BioEssays 35:1056–1062

    Article  PubMed  Google Scholar 

  3. Tani H, Akimitsu N (2012) Genome-wide technology for determining RNA stability in mammalian cells: historical perspective and recent advantages based on modified nucleotide labeling. RNA Biol 9:1233–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Russo J, Heck AM, Wilusz J, Wilusz CJ (2017) Metabolic labeling and recovery of nascent RNA to accurately quantify mRNA stability. Methods 120:39–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Balagopal V, Fluch L, Nissan T (2012) Ways and means of eukaryotic mRNA decay. Biochim Biophys Acta 1819:593–603

    Article  CAS  PubMed  Google Scholar 

  6. Cleary MD, Meiering CD, Jan E, Guymon R, Boothroyd JC (2005) Biosynthetic labeling of RNA with uracil phosphoribosyltransferase allows cell-specific microarray analysis of mRNA synthesis and decay. Nat Biotechnol 23:232–237

    Article  CAS  PubMed  Google Scholar 

  7. Dölken L, Ruzsics Z, Rädle B, Friedel CC, Zimmer R, Mages J, Hoffmann R, Dickinson P, Forster T, Ghazal P, Koszinowski UH (2008) High-resolution gene expression profiling for simultaneous kinetic parameter analysis of RNA synthesis and decay. RNA 14:1959–1972

    Article  PubMed  PubMed Central  Google Scholar 

  8. Burger K, Mühl B, Kellner M, Rohrmoser M, Gruber-Eber A, Windhager L, Friedel CC, Dölken L, Eick D (2013) 4-thiouridine inhibits rRNA synthesis and causes a nucleolar stress response. RNA Biol 10:1623–1630

    Article  PubMed  PubMed Central  Google Scholar 

  9. Duffy EE, Rutenberg-Schoenberg M, Stark CD, Kitchen RR, Gerstein MB, Simon MD (2015) Tracking distinct RNA populations using efficient and reversible covalent chemistry. Mol Cell 59:858–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Riml C, Amort T, Rieder D, Gasser C, Lusser A, Micura R (2017) Osmium-mediated transformation of 4-thiouridine to cytidine as key to study RNA dynamics by sequencing. Angew Chem Int Ed Engl 56:13479–13483

    Article  CAS  PubMed  Google Scholar 

  11. Herzog VA, Reichholf B, Neumann T, Rescheneder P, Bhat P, Burkard TR, Wlotzka W, von Haeseler A, Zuber J, Ameres SL (2017) Thiol-linked alkylation of RNA to assess expression dynamics. Nat Methods 14:1198–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schofield JA, Duffy EE, Kiefer L, Sullivan MC, Simon MD (2018) TimeLapse-seq: adding a temporal dimension to RNA sequencing through nucleoside recoding. Nat Methods 15:221–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dodt M, Roehr JT, Ahmed R, Dieterich C (2012) FLEXBAR—flexible barcode and adapter processing for next-generation sequencing platforms. Biology 1:895–905

    Article  PubMed  PubMed Central  Google Scholar 

  14. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed  PubMed Central  Google Scholar 

  15. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, Miller CA, Mardis ER, Ding L, Wilson RK (2012) VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 22:568–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lindenbaum P (2015) JVarkit: java-based utilities for bioinformatics. FigShare 10:m9

    Google Scholar 

  17. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21

    Article  CAS  PubMed  Google Scholar 

  18. Morgan M, Pagès H, Obenchain V, Hayden N (2018) Rsamtools: binary alignment (BAM), FASTA, variant call (BCF), and tabix file import R package version 1.32.0

    Google Scholar 

Download references

Acknowledgments

Funding of this research was provided by the Austrian Science Foundation (FWF) P27024-BBL to A.L. and P27947 to R.M.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexandra Lusser or Ronald Micura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lusser, A. et al. (2020). Thiouridine-to-Cytidine Conversion Sequencing (TUC-Seq) to Measure mRNA Transcription and Degradation Rates. In: LaCava, J., Vaňáčová, Š. (eds) The Eukaryotic RNA Exosome. Methods in Molecular Biology, vol 2062. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9822-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9822-7_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9821-0

  • Online ISBN: 978-1-4939-9822-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics