Skip to main content

Identifying MicroRNA Pathway Variants as Biomarkers of Patient Selection for Immune Therapy

  • Protocol
  • First Online:
Biomarkers for Immunotherapy of Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2055))

Abstract

In this chapter we discuss the discovery and validation of microRNA (miRNA) associated germline biomarkers, as well as their application on a cohort of patients treated with immune therapy to predict response and toxicity. MiRNAs are the first class of noncoding RNAs discovered, and these pathways have been shown to be important regulators of the systemic stress response, including that to cancer therapy. We detail the original discovery efforts identifying germline biomarkers that disrupt miRNA circuitry, and then the selection, application, and validation of these biomarkers and their potential to predict important outcomes to checkpoint therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flynt A, Lai E (2008) Biological principles of MicroRNA-mediated regulation: shared themes amid diversity. Nat Rev Genet 9(11):831–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Reinhart B, Slack F, Basson M, Pasquinelli A, Bettinger J, Rougvie A et al (2000) The 21 nucleotide let-7 RNA regulates C. elegans developmental timing. Nature 403:901–906

    Article  CAS  PubMed  Google Scholar 

  3. Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P et al (2007) MicroRNA signatures in human ovarian cancer. Cancer Res 67(18):8699–8707

    Article  CAS  PubMed  Google Scholar 

  4. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103(7):2257–2261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Saunders MA, Liang H, Wen-Hsiung L (2007) Human polymorphism at microRNAs and microRNA target sites. PNAS 104:3300–3305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE et al (2005) A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353(17):1793–1801

    Article  CAS  PubMed  Google Scholar 

  7. Chin LJ, Ratner E, Leng S, Zhai R, Nallur S, Babar I et al (2008) A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non-small cell lung cancer risk. Cancer Res 68(20):8535–8540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shen J, DiCioccio R, Odunsi K, Lele SB, Zhao H (2010) Novel genetic variants in miR-191 gene and familial ovarian cancer. BMC Cancer 10:47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Shen J, Ambrosone CB, DiCioccio RA, Odunsi K, Lele SB, Zhao H (2008) A functional polymorphism in the miR-146a gene and age of familial breast/ovarian cancer diagnosis. Carcinogenesis 29(10):1963–1966

    Article  CAS  PubMed  Google Scholar 

  10. Weidhaas JB, Babar I, Nallur SM, Trang P, Roush S, Boehm M et al (2007) MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Res 67(23):11111–11116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kato M, Paranjape T, Muller RU, Nallur S, Gillespie E, Keane K et al (2009) The mir-34 microRNA is required for the DNA damage response in vivo in C. elegans and in vitro in human breast cancer cells. Oncogene 28(25):2419–2424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Balca- Silva J, Sousa NS, Goncalves A, Abrantes A, Casalta-Lopes J, Beotelho M et al (2012) Effect of miR-34b overexpression on the radiosensitivity of non-small cell lung cancer cell lines. Anticancer Res 32:1603–1609

    CAS  PubMed  Google Scholar 

  13. Sathe A, Ayyar K, Reddy K (2014) MicroRNA let-7 in the spotlight: Role in innate immunity. Inflam Cell Signal e109:1–8

    Google Scholar 

  14. Cortez M, Ivan C, Valdecanas D, Wang X, Peltier H, Ye Y et al (2015) PDL1 Regulation by p53 via miR-34. J Natl Cancer Inst 108:djv303

    PubMed  PubMed Central  Google Scholar 

  15. Salzman DW, Nakamura K, Nallur S, Dookwah MT, Metheetrairut C, Slack FJ et al (2016) miR-34 activity is modulated through 5′-end phosphorylation in response to DNA damage. Nat Commun 7:10954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ratner E, Keane F, Lindner R, Tassi R, Paranjape T, Glasgow M et al (2012) A KRAS-variant is a Biomarker of Poor Outcome, Platinum Chemotherapy Resistance and a Potential Target for Therapy in Ovarian Cancer. Oncogene 31(42):4559–4566

    Article  CAS  PubMed  Google Scholar 

  17. Weidhaas J, Kim E, Herbst R, Yu J, Slack F, Blumenschein G et al (2014) The KRAS-variant and treatment response in BATTLE-1. J Clin Oncol 32(52):8135

    Article  Google Scholar 

  18. Graziano F, Canestrari E, Loupakis F, Ruzzo A, Galluccio N, Santini D et al (2010) Genetic modulation of the Let-7 microRNA binding to KRAS 3′-untranslated region and survival of metastatic colorectal cancer patients treated with salvage cetuximab-irinotecan. Pharmacogenomics J 10(5):458–464

    Article  CAS  PubMed  Google Scholar 

  19. Zhang W, Winder T, Ning Y, Pohl A, Yang D, Kahn M et al (2011) A let-7 microRNA-binding site polymorphism in 3′-untranslated region of KRAS gene predicts response in wild-type KRAS patients with metastatic colorectal cancer treated with cetuximab monotherapy. Ann Oncol 22(1):104–109

    Article  CAS  PubMed  Google Scholar 

  20. Ganzinelli M, Rulli E, Caiola E, Chiara Garassino M, Broggini M, Copreni E et al (2015) Role of KRAS-LCS6 polymorphism in advanced NSCLC patients treated with erlotinib or docetaxel in second line treatment (TAILOR). Sci Rep 5:16331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chung C, Lee J, Slebos R, Howard J, Perez JM, Kang H et al (2014) A 3'UTR KRAS variant is associated with cisplatin resistance in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. Ann Oncol 25(11):2230–2236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Saridaki Z, Weidhaas J, Lenz H-J, Laurent-Puig P, Jacobs B, De Schutter J et al (2014) A let-7 microRNA-binding site polymorphism is KRAS predicts improved outcome in metastatic colorectal cancer (mCRC) patients treated with salvage cetuximab/panitumumab monotherapy. Clin Cancer Res 20(17):4499–4510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Weidhaas JB, Harris J, Schaue D, Chen A, Chin R, Axelrod R et al (2017) The KRAS-variant and Cetuximab Response in Head and Neck Squamous Cell Cancer, A Secondary Analysis of a Randomized Clinical Trial. JAMA Oncol 3(4):483–491

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chen X, Paranjape T, Stahlhut C, McVeigh T, Keane F, Nallur S et al (2015) Targeted resequencing of the microRNAome and 3'UTRome reveals functional germline DNA variants with altered prevalence in epithelial ovarian cancer. Oncogene 34(16):2125–2137

    Article  CAS  PubMed  Google Scholar 

  25. Hodges E, Xuan Z, Balija V, Kramer M, Molla MN, Smith SW et al (2007) Genome-wide in situ exon capture for selective resequencing. Nat Genet 39(12):1522–1527

    Article  CAS  PubMed  Google Scholar 

  26. Okou DT, Steinberg KM, Middle C, Cutler DJ, Albert TJ, Zwick ME (2007) Microarray-based genomic selection for high-throughput resequencing. Nat Methods 4(11):907–909

    Article  CAS  PubMed  Google Scholar 

  27. Albert TJ, Molla MN, Muzny DM, Nazareth L, Wheeler D, Song X et al (2007) Direct selection of human genomic loci by microarray hybridization. Nat Methods 4(11):903–905

    Article  CAS  PubMed  Google Scholar 

  28. Kato M, de Lencastre A, Pincus Z, Slack FJ (2009) Dynamic expression of small non-coding RNAs, including novel microRNAs and piRNAs/21U-RNAs, during Caenorhabditis elegans development. Genome Biol 10(5):R54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18(11):1851–1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Smigielski EM, Sirotkin K, Ward M, Sherry ST (2000) dbSNP: a database of single nucleotide polymorphisms. Nucleic Acids Res 28(1):352–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Durbin RM, Abecasis GR, Altshuler DL, Auton A, Brooks LD, Gibbs RA et al (2010) A map of human genome variation from population-scale sequencing. Nature 467(7319):1061–1073

    Article  CAS  PubMed  Google Scholar 

  33. Choi M, Scholl UI, Ji W, Liu T, Tikhonova IR, Zumbo P et al (2009) Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci U S A 106(45):19096–19101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human MicroRNA targets. PLoS Biol 2(11):e363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115(7):787–798

    Article  CAS  PubMed  Google Scholar 

  36. Kruger J, Rehmsmeier M (2006) RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 34(Web Server):W451–W454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Agarwal V, Bell GW, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife 4

    Google Scholar 

  38. Fang W, Bartel DP (2015) The menu of features that define primary microRNAs and enable de novo design of microRNA genes. Mol Cell 60(1):131–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20

    Article  CAS  PubMed  Google Scholar 

  40. Shin C, Nam JW, Farh KK, Chiang HR, Shkumatava A, Bartel DP (2010) Expanding the microRNA targeting code: functional sites with centered pairing. Mol Cell 38(6):789–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brahmer JR, Lacchetti C, Schneider BJ, Atkins MB, Brassil KJ, Caterino JM et al (2018) Management of Immune-Related Adverse Events in Patients Treated With Immune Checkpoint Inhibitor Therapy: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol 36(17):1714–1768

    Article  CAS  PubMed  Google Scholar 

  42. Nishino M, Giobbie-Hurder A, Gargano M, Suda M, Ramaiya NH, Hodi FS (2013) Developing a common language for tumor response to immunotherapy: immune-related response criteria using unidimensional measurements. Clin Cancer Res 19(14):3936–3943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Breiman L, Friedman JH, Olshen RA, Stone CJ (2017) Classification and regression trees. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  44. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Series B Stat Methodology 58(1):267–288

    Google Scholar 

  45. Chen T, Guestrin C (2016) XGBoost: A scalable tree boosting system. https://arxiv.org/abs/1603.02754

  46. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  47. Team RC. R: A language and environment for statistical computing. R Foundation for Statistical Computing V, Austria. https://www.R-project.org/, editor 2018

  48. Su Y, Gelman A, Hill J, Yajima M (2011) Multiple imputation with diagnostics (mi) in r: opening windows into the black box. j stat softw 45(2):1–31

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanne B. Weidhaas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Weidhaas, J.B. (2020). Identifying MicroRNA Pathway Variants as Biomarkers of Patient Selection for Immune Therapy. In: Thurin, M., Cesano, A., Marincola, F. (eds) Biomarkers for Immunotherapy of Cancer. Methods in Molecular Biology, vol 2055. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9773-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9773-2_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9772-5

  • Online ISBN: 978-1-4939-9773-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics