Skip to main content

Methods to Detect Immunogenic Cell Death In Vivo

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2055))

Abstract

In response to selected stressors, cancer cells can undergo a form of regulated cell death that—in immunocompetent syngeneic hosts—is capable of eliciting an adaptive immune response specific for dead cell-associated antigens. Thus, such variant of regulated cell death manifests with robust antigenicity and adjuvanticity. As compared to their normal counterparts, malignant cells are highly antigenic per se, implying that they express a variety of antigens that are not covered by central tolerance. However, the precise modality through which cancer cells die in response to stress has a major influence on adjuvanticity. Moreover, the adjuvanticity threshold to productively drive anticancer immune responses is considerably lower in tumor-naïve hosts as compared to their tumor-bearing counterparts, largely reflecting the establishment of peripheral tolerance to malignant lesions in the latter (but not in the former). So far, no cellular biomarker or combination thereof has been found to reliably predict the ability of cancer cell death to initiate antitumor immunity. Thus, although some surrogate biomarkers of adjuvanticity can be used for screening purposes, the occurrence of bona fide immunogenic cell death (ICD) can only be ascertained in vivo. Here, we describe two methods that can be harnessed to straightforwardly determine the immunogenicity of mouse cancer cells succumbing to stress in both tumor-naïve and tumor-bearing hosts.

Takahiro Yamazaki and Aitziber Buqué contributed equally to this work.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Change history

  • 08 November 2019

    This book was inadvertently published with one of the contributing author’s name printed as Aitziber Buqué Martinez, which should have been Aitziber Buqué.

References

  1. Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147(4):742–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fuchs Y, Steller H (2015) Live to die another way: modes of programmed cell death and the signals emanating from dying cells. Nat Rev Mol Cell Biol 16(6):329–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ashkenazi A, Fairbrother WJ, Leverson JD, Souers AJ (2017) From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat Rev Drug Discov 16(4):273–284

    Article  CAS  PubMed  Google Scholar 

  4. Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G (2017) Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol 17(2):97–111

    Article  CAS  PubMed  Google Scholar 

  5. Kroemer G, Galluzzi L, Kepp O, Zitvogel L (2013) Immunogenic cell death in cancer therapy. Annu Rev Immunol 31:51–72

    Article  CAS  PubMed  Google Scholar 

  6. Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P (2012) Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 12(12):860–875

    Article  CAS  PubMed  Google Scholar 

  7. Galluzzi L, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cecconi F et al (2017) Molecular definitions of autophagy and related processes. EMBO J 36(13):1811–1836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 348(6230):69–74

    Article  CAS  PubMed  Google Scholar 

  9. Schumacher TN, Hacohen N (2016) Neoantigens encoded in the cancer genome. Curr Opin Immunol 41:98–103

    Article  CAS  PubMed  Google Scholar 

  10. Gubin MM, Artyomov MN, Mardis ER, Schreiber RD (2015) Tumor neoantigens: building a framework for personalized cancer immunotherapy. J Clin Invest 125(9):3413–3421

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yui MA, Rothenberg EV (2014) Developmental gene networks: a triathlon on the course to T cell identity. Nat Rev Immunol 14(8):529–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Takaba H, Takayanagi H (2017) The mechanisms of T cell selection in the thymus. Trends Immunol 38(11):805–816

    Article  CAS  PubMed  Google Scholar 

  13. Brenner C, Galluzzi L, Kepp O, Kroemer G (2013) Decoding cell death signals in liver inflammation. J Hepatol 59(3):583–594

    Article  CAS  PubMed  Google Scholar 

  14. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P et al (2018) Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ 25(3):486–541

    Article  PubMed  PubMed Central  Google Scholar 

  15. Galluzzi L, Kepp O, Chan FK, Kroemer G (2017) Necroptosis: mechanisms and relevance to disease. Annu Rev Pathol 12:103–130

    Article  CAS  PubMed  Google Scholar 

  16. Vitale I, Galluzzi L, Senovilla L, Criollo A, Jemaa M, Castedo M et al (2011) Illicit survival of cancer cells during polyploidization and depolyploidization. Cell Death Differ 18(9):1403–1413

    Article  CAS  PubMed  Google Scholar 

  17. Vitale I, Galluzzi L, Castedo M, Kroemer G (2011) Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat Rev Mol Cell Biol 12(6):385–392

    Article  CAS  PubMed  Google Scholar 

  18. Stratton MR, Campbell PJ, Futreal PA (2009) The cancer genome. Nature 458(7239):719–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW (2013) Cancer genome landscapes. Science 339(6127):1546–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pon JR, Marra MA (2015) Driver and passenger mutations in cancer. Annu Rev Pathol 10:25–50

    Article  CAS  PubMed  Google Scholar 

  21. Garg AD, Martin S, Golab J, Agostinis P (2014) Danger signalling during cancer cell death: origins, plasticity and regulation. Cell Death Differ 21(1):26–38

    Article  CAS  PubMed  Google Scholar 

  22. Garg AD, Agostinis P (2017) Cell death and immunity in cancer: from danger signals to mimicry of pathogen defense responses. Immunol Rev 280(1):126–148

    Article  CAS  PubMed  Google Scholar 

  23. Garg AD, Galluzzi L, Apetoh L, Baert T, Birge RB, Bravo-San Pedro JM et al (2015) Molecular and translational classifications of DAMPs in immunogenic cell death. Front Immunol 6:588

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yatim N, Cullen S, Albert ML (2017) Dying cells actively regulate adaptive immune responses. Nat Rev Immunol 17(4):262–275

    Article  CAS  PubMed  Google Scholar 

  25. Linkermann A, Stockwell BR, Krautwald S, Anders HJ (2014) Regulated cell death and inflammation: an auto-amplification loop causes organ failure. Nat Rev Immunol 14(11):759–767

    Article  CAS  PubMed  Google Scholar 

  26. Chen GY, Nunez G (2010) Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10(12):826–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. West AP, Shadel GS (2017) Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Rev Immunol 17(6):363–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Broz P, Dixit VM (2016) Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol 16(7):407–420

    Article  CAS  PubMed  Google Scholar 

  29. Cao X (2016) Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nat Rev Immunol 16(1):35–50

    Article  CAS  PubMed  Google Scholar 

  30. Gay NJ, Symmons MF, Gangloff M, Bryant CE (2014) Assembly and localization of toll-like receptor signalling complexes. Nat Rev Immunol 14(8):546–558

    Article  CAS  PubMed  Google Scholar 

  31. Fridman WH, Zitvogel L, Sautes-Fridman C, Kroemer G (2017) The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol 14(12):717–734

    Article  CAS  PubMed  Google Scholar 

  32. Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G (2015) Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 28(6):690–714

    Article  CAS  PubMed  Google Scholar 

  33. Vijayan D, Young A, Teng MWL, Smyth MJ (2017) Targeting immunosuppressive adenosine in cancer. Nat Rev Cancer 17(12):709–724

    Article  CAS  PubMed  Google Scholar 

  34. Kepp O, Senovilla L, Vitale I, Vacchelli E, Adjemian S, Agostinis P et al (2014) Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology 3(9):e955691

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dudek AM, Garg AD, Krysko DV, De Ruysscher D, Agostinis P (2013) Inducers of immunogenic cancer cell death. Cytokine Growth Factor Rev 24(4):319–333

    Article  CAS  PubMed  Google Scholar 

  36. Janicka M, Gubernator J (2017) Use of nanotechnology for improved pharmacokinetics and activity of immunogenic cell death inducers used in cancer chemotherapy. Expert Opin Drug Deliv 14(9):1059–1075

    Article  CAS  PubMed  Google Scholar 

  37. Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory T cells and immune tolerance. Cell 133(5):775–787

    Article  CAS  PubMed  Google Scholar 

  38. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A (2017) Primary, adaptive, and acquired resistance to Cancer immunotherapy. Cell 168(4):707–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH et al (2018) The immune landscape of cancer. Immunity 48(4):812–830.e814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lu L, Barbi J, Pan F (2017) The regulation of immune tolerance by FOXP3. Nat Rev Immunol 17(11):703–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vanpouille-Box C, Alard A, Aryankalayil MJ, Sarfraz Y, Diamond JM, Schneider RJ et al (2017) DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun 8:15618

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yamazaki T, Galluzzi L (2017) TREX1 cuts down on cancer immunogenicity. Trends Cell Biol 27(8):543–545

    Article  CAS  PubMed  Google Scholar 

  43. Demaria S, Ng B, Devitt ML, Babb JS, Kawashima N, Liebes L et al (2004) Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys 58(3):862–870

    Article  PubMed  Google Scholar 

  44. Ngwa W, Irabor OC, Schoenfeld JD, Hesser J, Demaria S, Formenti SC (2018) Using immunotherapy to boost the abscopal effect. Nat Rev Cancer 18(5):313–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rodriguez-Ruiz ME, Vanpouille-Box C, Melero I, Formenti SC, Demaria S (2018) Immunological mechanisms responsible for radiation-induced Abscopal effect. Trends Immunol 39(8):644–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Golden EB, Chhabra A, Chachoua A, Adams S, Donach M, Fenton-Kerimian M et al (2015) Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial. Lancet Oncol 16(7):795–803

    Article  CAS  PubMed  Google Scholar 

  47. Golden EB, Demaria S, Schiff PB, Chachoua A, Formenti SC (2013) An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer. Cancer Immunol Res 1(6):365–372

    Article  PubMed  PubMed Central  Google Scholar 

  48. Weichselbaum RR, Liang H, Deng L, Fu YX (2017) Radiotherapy and immunotherapy: a beneficial liaison? Nat Rev Clin Oncol 14(6):365–379

    Article  CAS  PubMed  Google Scholar 

  49. Johnstone CD, Lindsay P, Graves EE, Wong E, Perez JR, Poirier Y et al (2017) Multi-institutional MicroCT image comparison of image-guided small animal irradiators. Phys Med Biol 62(14):5760–5776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang Z, Wodzak M, Belzile O, Zhou H, Sishc B, Yan H et al (2016) Effective rat lung tumor model for stereotactic body radiation therapy. Radiat Res 185(6):616–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yamano T, Kubo S, Fukumoto M, Yano A, Mawatari-Furukawa Y, Okamura H et al (2016) Whole cell vaccination using immunogenic cell death by an oncolytic adenovirus is effective against a colorectal cancer model. Mol Ther Oncolytics 3:16031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Casares N, Pequignot MO, Tesniere A, Ghiringhelli F, Roux S, Chaput N et al (2005) Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med 202(12):1691–1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sukkurwala AQ, Adjemian S, Senovilla L, Michaud M, Spaggiari S, Vacchelli E et al (2014) Screening of novel immunogenic cell death inducers within the NCI mechanistic diversity set. Oncoimmunology 3:e28473

    Article  PubMed  PubMed Central  Google Scholar 

  54. Schrand B, Verma B, Levay A, Patel S, Castro I, Benaduce AP et al (2017) Radiation-induced enhancement of antitumor T-cell immunity by VEGF-targeted 4-1BB Costimulation. Cancer Res 77(6):1310–1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rodriguez-Ruiz ME, Rodriguez I, Garasa S, Barbes B, Solorzano JL, Perez-Gracia JL et al (2016) Abscopal effects of radiotherapy are enhanced by combined immunostimulatory mAbs and are dependent on CD8 T cells and crosspriming. Cancer Res 76(20):5994–6005

    Article  CAS  PubMed  Google Scholar 

  56. Lan Y, Zhang D, Xu C, Hance KW, Marelli B, Qi J et al (2018) Enhanced preclinical antitumor activity of M7824, a bifunctional fusion protein simultaneously targeting PD-L1 and TGF-beta. Sci Transl Med 10(424):eaan5488

    Article  PubMed  CAS  Google Scholar 

  57. Rodriguez-Ruiz ME, Rodriguez I, Barbes B, Mayorga L, Sanchez-Paulete AR, Ponz-Sarvise M et al (2017) Brachytherapy attains abscopal effects when combined with immunostimulatory monoclonal antibodies. Brachytherapy 16(6):1246–1251

    Article  PubMed  Google Scholar 

  58. Lenk H, Muller U, Tanneberger S (1987) Mitoxantrone: mechanism of action, antitumor activity, pharmacokinetics, efficacy in the treatment of solid tumors and lymphomas, and toxicity. Anticancer Res 7(6):1257–1264

    CAS  PubMed  Google Scholar 

  59. Vollmer T, Stewart T, Baxter N (2010) Mitoxantrone and cytotoxic drugs’ mechanisms of action. Neurology 74(Suppl 1):S41–S46

    Article  CAS  PubMed  Google Scholar 

  60. Fox EJ (2004) Mechanism of action of mitoxantrone. Neurology 63(12 Suppl 6):S15–S18

    Article  CAS  PubMed  Google Scholar 

  61. Parker C, Waters R, Leighton C, Hancock J, Sutton R, Moorman AV et al (2010) Effect of mitoxantrone on outcome of children with first relapse of acute lymphoblastic leukaemia (ALL R3): an open-label randomised trial. Lancet 376(9757):2009–2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Petrylak DP, Tangen CM, Hussain MH, Lara PN Jr, Jones JA, Taplin ME et al (2004) Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 351(15):1513–1520

    Article  CAS  PubMed  Google Scholar 

  63. Valle J, Wasan H, Palmer DH, Cunningham D, Anthoney A, Maraveyas A et al (2010) Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med 362(14):1273–1281

    Article  CAS  PubMed  Google Scholar 

  64. Perilongo G, Maibach R, Shafford E, Brugieres L, Brock P, Morland B et al (2009) Cisplatin versus cisplatin plus doxorubicin for standard-risk hepatoblastoma. N Engl J Med 361(17):1662–1670

    Article  CAS  PubMed  Google Scholar 

  65. Posner MR, Hershock DM, Blajman CR, Mickiewicz E, Winquist E, Gorbounova V et al (2007) Cisplatin and fluorouracil alone or with docetaxel in head and neck cancer. N Engl J Med 357(17):1705–1715

    Article  CAS  PubMed  Google Scholar 

  66. Winton T, Livingston R, Johnson D, Rigas J, Johnston M, Butts C et al (2005) Vinorelbine plus cisplatin vs. observation in resected non-small-cell lung cancer. N Engl J Med 352(25):2589–2597

    Article  CAS  PubMed  Google Scholar 

  67. Arriagada R, Bergman B, Dunant A, Le Chevalier T, Pignon JP, Vansteenkiste J et al (2004) Cisplatin-based adjuvant chemotherapy in patients with completely resected non-small-cell lung cancer. N Engl J Med 350(4):351–360

    Article  PubMed  Google Scholar 

  68. Galluzzi L, Vitale I, Michels J, Brenner C, Szabadkai G, Harel-Bellan A et al (2014) Systems biology of cisplatin resistance: past, present and future. Cell Death Dis 5:e1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O et al (2012) Molecular mechanisms of cisplatin resistance. Oncogene 31(15):1869–1883

    Article  CAS  PubMed  Google Scholar 

  70. Siddik ZH (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22(47):7265–7279

    Article  CAS  PubMed  Google Scholar 

  71. Blazar BR, Taylor PA, Linsley PS, Vallera DA (1994) In vivo blockade of CD28/CTLA4: B7/BB1 interaction with CTLA4-Ig reduces lethal murine graft-versus-host disease across the major histocompatibility complex barrier in mice. Blood 83(12):3815–3825

    Article  CAS  PubMed  Google Scholar 

  72. Torsvik A, Stieber D, Enger PO, Golebiewska A, Molven A, Svendsen A et al (2014) U-251 revisited: genetic drift and phenotypic consequences of long-term cultures of glioblastoma cells. Cancer Med 3(4):812–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Capes-Davis A, Reid YA, Kline MC, Storts DR, Strauss E, Dirks WG et al (2013) Match criteria for human cell line authentication: where do we draw the line? Int J Cancer 132(11):2510–2519

    Article  CAS  PubMed  Google Scholar 

  74. Terenzi A, Pirker C, Keppler BK, Berger W (2016) Anticancer metal drugs and immunogenic cell death. J Inorg Biochem 165:71–79

    Article  CAS  PubMed  Google Scholar 

  75. Galluzzi L, Morselli E, Vitale I, Kepp O, Senovilla L, Criollo A et al (2010) miR-181a and miR-630 regulate cisplatin-induced cancer cell death. Cancer Res 70(5):1793–1803

    Article  CAS  PubMed  Google Scholar 

  76. Martins I, Kepp O, Schlemmer F, Adjemian S, Tailler M, Shen S et al (2011) Restoration of the immunogenicity of cisplatin-induced cancer cell death by endoplasmic reticulum stress. Oncogene 30(10):1147–1158

    Article  CAS  PubMed  Google Scholar 

  77. Tesniere A, Schlemmer F, Boige V, Kepp O, Martins I, Ghiringhelli F et al (2010) Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene 29(4):482–491

    Article  CAS  PubMed  Google Scholar 

  78. Garg AD, More S, Rufo N, Mece O, Sassano ML, Agostinis P et al (2017) Trial watch: immunogenic cell death induction by anticancer chemotherapeutics. Oncoimmunology 6(12):e1386829

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bezu L, Gomes-de-Silva LC, Dewitte H, Breckpot K, Fucikova J, Spisek R et al (2015) Combinatorial strategies for the induction of immunogenic cell death. Front Immunol 6:187

    PubMed  PubMed Central  Google Scholar 

  80. Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P et al (2011) Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334(6062):1573–1577

    Article  CAS  PubMed  Google Scholar 

  81. Bezu L, Sauvat A, Humeau J, Gomes-da-Silva LC, Iribarren K, Forveille S et al (2018) eIF2alpha phosphorylation is pathognomonic for immunogenic cell death. Cell Death Differ 25(8):1375–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Vacchelli E, Ma Y, Baracco EE, Sistigu A, Enot DP, Pietrocola F et al (2015) Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1. Science 350(6263):972–978

    Article  CAS  PubMed  Google Scholar 

  83. Sistigu A, Yamazaki T, Vacchelli E, Chaba K, Enot DP, Adam J et al (2014) Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat Med 20(11):1301–1309

    Article  CAS  PubMed  Google Scholar 

  84. Golden EB, Frances D, Pellicciotta I, Demaria S, Helen Barcellos-Hoff M, Formenti SC (2014) Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. Oncoimmunology 3:e28518

    Article  PubMed  PubMed Central  Google Scholar 

  85. Vacchelli E, Bloy N, Aranda F, Buque A, Cremer I, Demaria S et al (2016) Trial watch: immunotherapy plus radiation therapy for oncological indications. Oncoimmunology 5(9):e1214790

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Wu J, Waxman DJ (2018) Immunogenic chemotherapy: dose and schedule dependence and combination with immunotherapy. Cancer Lett 419:210–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wu J, Waxman DJ (2015) Metronomic cyclophosphamide eradicates large implanted GL261 gliomas by activating antitumor Cd8(+) T-cell responses and immune memory. Oncoimmunology 4(4):e1005521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Jiang L, Paone S, Caruso S, Atkin-Smith GK, Phan TK, Hulett MD et al (2017) Determining the contents and cell origins of apoptotic bodies by flow cytometry. Sci Rep 7(1):14444

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL et al (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13(1):54–61

    Article  CAS  PubMed  Google Scholar 

  90. Naik S, Bouladoux N, Linehan JL, Han SJ, Harrison OJ, Wilhelm C et al (2015) Commensal-dendritic-cell interaction specifies a unique protective skin immune signature. Nature 520(7545):104–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ginhoux F, Ng LG, Merad M (2012) Understanding the murine cutaneous dendritic cell network to improve intradermal vaccination strategies. Curr Top Microbiol Immunol 351:1–24

    CAS  PubMed  Google Scholar 

  92. Karreman MA, Ruthensteiner B, Mercier L, Schieber NL, Solecki G, Winkler F et al (2017) Find your way with X-ray: using microCT to correlate in vivo imaging with 3D electron microscopy. Methods Cell Biol 140:277–301

    Article  PubMed  CAS  Google Scholar 

  93. Winkelmann CT, Figueroa SD, Sieckman GL, Rold TL, Hoffman TJ (2012) Non-invasive microCT imaging characterization and in vivo targeting of BB2 receptor expression of a PC-3 bone metastasis model. Mol Imaging Biol 14(6):667–675

    Article  PubMed  Google Scholar 

  94. Galluzzi L, Vanpouille-Box C, Bakhoum SF, Demaria S (2018) SnapShot: CGAS-STING Signaling. Cell 173(1):276–276.e1

    Article  CAS  PubMed  Google Scholar 

  95. Vanpouille-Box C, Formenti SC, Demaria S (2017) TREX1 dictates the immune fate of irradiated cancer cells. Oncoimmunology 6(9):e1339857

    Article  PubMed  PubMed Central  Google Scholar 

  96. Hoos A (2016) Development of immuno-oncology drugs - from CTLA4 to PD1 to the next generations. Nat Rev Drug Discov 15(4):235–247

    Article  CAS  PubMed  Google Scholar 

  97. Ribas A, Wolchok JD (2018) Cancer immunotherapy using checkpoint blockade. Science 359(6382):1350–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Vanpouille-Box C, Diamond JM, Pilones KA, Zavadil J, Babb JS, Formenti SC et al (2015) TGFbeta is a master regulator of radiation therapy-induced antitumor immunity. Cancer Res 75(11):2232–2242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sharpe AH, Pauken KE (2018) The diverse functions of the PD1 inhibitory pathway. Nat Rev Immunol 18(3):153–167

    Article  CAS  PubMed  Google Scholar 

  100. Vanpouille-Box C, Demaria S, Formenti SC, Galluzzi L (2018) Cytosolic DNA sensing in organismal tumor control. Cancer Cell 34(3):361–378

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are supported by a Breakthrough Level 2 grant from the US Department of Defense (DoD), Breast Cancer Research Program (BRCP) (#BC180476P1), by a startup grant from the Dept. of Radiation Oncology at Weill Cornell Medicine (New York, USA), by industrial collaborations with Lytix (Oslo, Norway) and Phosplatin (New York, USA), and by donations from Phosplatin (New York, USA), the Luke Heller TECPR2 Foundation (Boston, USA), and Sotio a.s. (Prague, Czech Republic).

Author Disclosure: L.G. provides remunerated consulting to OmniSEQ (Buffalo, NY, USA), Astra Zeneca (Gaithersburg, MD, USA), VL47 (New York, NY, USA), and the Luke Heller TECPR2 Foundation (Boston, MA, USA), and he is member of the Scientific Advisory Committee of OmniSEQ (Buffalo, NY, USA). The other authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Galluzzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yamazaki, T., Buqué, A., Rybstein, M., Chen, J., Sato, A., Galluzzi, L. (2020). Methods to Detect Immunogenic Cell Death In Vivo. In: Thurin, M., Cesano, A., Marincola, F. (eds) Biomarkers for Immunotherapy of Cancer. Methods in Molecular Biology, vol 2055. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9773-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9773-2_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9772-5

  • Online ISBN: 978-1-4939-9773-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics