Skip to main content

Web Services for Molecular Docking Simulations

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2053))

Abstract

Docking process is one of the most significant activities for the analysis of protein–protein or protein–ligand complexes. These tools have become of unique importance when allocated in web services, collaborating scientifically with several areas of knowledge in an interdisciplinary way. Among the several web services dedicated to carrying out molecular docking simulations, we selected the DockThor web service. To illustrate the application of DockThor to protein–ligand docking simulations, we analyzed the docking of a ligand against the structure of epidermal growth factor receptor, an essential molecular marker in cancer research.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gazdar AF (2009) Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene 28(Suppl 1):24–31

    Article  Google Scholar 

  2. Mukesh B, Rakesh K (2011) Molecular docking: a review. IJRAP 2:1746–1751

    Google Scholar 

  3. Vakser IA (2014) Protein-protein docking: from interaction to interactome. Biophys J 107:1785–1793

    Article  CAS  Google Scholar 

  4. Meng XY, Zhang HX, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7:146–157

    Article  CAS  Google Scholar 

  5. Seshacharyulu P, Ponnusamy MP, Haridas D, Jain M, Ganti AK, Batra SK (2012) Targeting the EGFR signaling pathway in cancer therapy. Expert Opin Ther Targets 16:15–31

    Article  CAS  Google Scholar 

  6. de Magalhães CS, Almeida DM, Barbosa HJC, Dardenne LE (2014) A dynamic niching genetic algorithm strategy for docking of highly flexible ligands. Inform Sci 289:206–224

    Article  Google Scholar 

  7. Kurcinski M, Jamroz M, Blaszczyk M, Kolinski A, Kmiecik S (2015) CABS-dock web server for the flexible docking of peptides to proteins without prior knowledge of the binding site. Nucleic Acids Res 43:419–424

    Article  Google Scholar 

  8. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33:363–367

    Article  Google Scholar 

  9. Mashiach E, Schneidman-Duhovny D, Andrusier N, Nussinov R, Wolfson HJ (2008) FireDock: a web server for fast interaction refinement in molecular docking. Nucleic Acids Res 36:229–232

    Article  Google Scholar 

  10. Mashiach E, Nussinov R, Wolfson HJ (2010) FiberDock: a web server for flexible induced-fit backbone refinement in molecular docking. Nucleic Acids Res 38:457–461

    Article  Google Scholar 

  11. Tovchigrechko A, Vakser IA (2006) GRAMM-X public web server for protein-protein docking. Nucleic Acids Res 34:310–314

    Article  Google Scholar 

  12. Vries SJ, Dijk MY, Bonvin AMJJ (2010) The HADDOCK web server for data-driven biomolecular docking. Nat Protoc 5:883–897

    Article  Google Scholar 

  13. Macindoe G, Mavridis L, Venkatraman V, Devignes MD, Ritchie DW (2010) HexServer: an FFT-based protein docking server powered by graphics processors. Nucleic Acids Res 38:445–449

    Article  Google Scholar 

  14. Chang DTH, Oyang YJ, Lin JH (2005) MEDock: a web server for efficient prediction of ligand binding sites based on a novel optimization algorithm. Nucleic Acids Res 33:233–238

    Article  CAS  Google Scholar 

  15. LysKov S, Gray JJ (2008) The RosettaDock server for local protein-protein docking. Nucleic Acids Res 36:233–238

    Article  Google Scholar 

  16. Grosdidier A, Zoete V, Michielin O (2011) SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res 39:270–277

    Article  Google Scholar 

  17. Li H, Gao Z, Kang L, Zhang H, Yang K, Yu K et al (2006) TarFisDock: a web server for identifying drug targets with docking approach. Nucleic Acids Res 34:219–224

    Article  Google Scholar 

  18. Pierce BG, Wiehe K, Hwang H, Kim BH, Vreven T, Weng Z (2014) ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics 30:1771–1773

    Article  CAS  Google Scholar 

  19. Gupta A, Gandhimathi A, Sharma P, Jayaram B (2007) ParDOCK: an all atom energy based Monte Carlo docking protocol for protein-ligand complexes. Protein Pept Lett 14:632–646

    Article  CAS  Google Scholar 

  20. Janin J (2002) Welcome to CAPRI: a critical assessment of predicted interactions. Proteins 47:257

    Article  CAS  Google Scholar 

  21. Guedes IA, de Magalhães CS, Dardenne LE (2014) Receptor–ligand molecular docking. Biophys Rev 6:75–87

    Article  CAS  Google Scholar 

  22. Xu G, Abad MC, Connolly PJ, Neeper MP, Struble GT, Springer BA et al (2008) 4-Amino-6-arylamino-pyrimidine-5-carbaldehyde hydrazones as potent ErbB-2/EGFR dual kinase inhibitors. Bioorg Med Chem Lett 18:4615–4619

    Article  CAS  Google Scholar 

  23. Almeida DM (2011) Dockthor: Implementação, Aprimoramento e Validação de um Programa de Docking Receptor-Ligante. MSc Dissertation, Laboratório Nacional de Computação Científica-LNCC, Petrópolis, RJ

    Google Scholar 

  24. Halgren TA (1999) MMFF VII. Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for intermolecular-interaction energies and geometries. J Comput Chem 20:730–748

    Article  CAS  Google Scholar 

  25. Guedes IA (2016) Development of empirical scoring functions for predicting protein-ligand binding affinity. Doctoral dissertation, Laboratório Nacional de Computação Científica-LNCC, Petrópolis, RJ

    Google Scholar 

  26. Li Y, Liu Z, Li J, Han L, Liu J, Zhao Z et al (2014) Comparative assessment of scoring functions on an updated benchmark: 1. Compilation of the test set. J Chem Inf Model 54:1700–1716

    Article  CAS  Google Scholar 

  27. Dardenne LE (2000) Propriedades Eletrostáticas do Sítio Ativo de Cisteíno Proteinases da Família da Papaína. Doctoral dissertation, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, Brasil

    Google Scholar 

Download references

Acknowledgments

This work was supported by LNCC/MCTIC, SINAPAD, INCT-Inofar, FAPERJ, CNPq, and CAPES.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

da Silveira, N.J.F., Pereira, F.S.S., Elias, T.C., Henrique, T. (2019). Web Services for Molecular Docking Simulations. In: de Azevedo Jr., W. (eds) Docking Screens for Drug Discovery. Methods in Molecular Biology, vol 2053. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9752-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9752-7_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9751-0

  • Online ISBN: 978-1-4939-9752-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics