Skip to main content

Comparing Peptide Spectra Matches Across Search Engines

  • Protocol
  • First Online:
Mass Spectrometry Data Analysis in Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2051))

Abstract

Mass spectrometry is extremely efficient for sequencing small peptides generated by, for example, a trypsin digestion of a complex mixture. Current instruments have the capacity to generate 50–100 K MSMS spectra from a single run. Of these ~30–50% is typically assigned to peptide matches on a 1% FDR threshold. The remaining spectra need more research to explain. We address here whether the 30–50% matched spectra provide consensus matches when using different database-dependent search pipelines. Although the majority of the spectra peptide assignments concur across search engines, our conclusion is that database-dependent search engines still require improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keller A, Eng J, Zhang N, Li XJ, Aebersold R (2005) A uniform proteomics MS/MS analysis platform utilizing open XML file formats. Mol Syst Biol 1:2005.0017. https://doi.org/10.1038/msb4100024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shteynberg D, Nesvizhskii AI, Moritz RL, Deutsch EW (2013) Combining results of multiple search engines in proteomics. Mol Cell Proteomics 12(9):2383–2393. https://doi.org/10.1074/mcp.R113.027797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Paulo JA (2013) Practical and efficient searching in proteomics: a cross engine comparison. WebmedCentral 4(10). https://doi.org/10.9754/journal.wplus.2013.0052

  4. Kapp EA, Schutz F, Connolly LM, Chakel JA, Meza JE, Miller CA, Fenyo D, Eng JK, Adkins JN, Omenn GS, Simpson RJ (2005) An evaluation, comparison, and accurate benchmarking of several publicly available MS/MS search algorithms: sensitivity and specificity analysis. Proteomics 5(13):3475–3490. https://doi.org/10.1002/pmic.200500126

    Article  CAS  PubMed  Google Scholar 

  5. Balgley BM, Laudeman T, Yang L, Song T, Lee CS (2007) Comparative evaluation of tandem MS search algorithms using a target-decoy search strategy. Mol Cell Proteomics 6(9):1599–1608. https://doi.org/10.1074/mcp.M600469-MCP200

    Article  CAS  PubMed  Google Scholar 

  6. Alves G, Wu WW, Wang G, Shen RF, Yu YK (2008) Enhancing peptide identification confidence by combining search methods. J Proteome Res 7(8):3102–3113. https://doi.org/10.1021/pr700798h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kwon T, Choi H, Vogel C, Nesvizhskii AI, Marcotte EM (2011) MSblender: a probabilistic approach for integrating peptide identifications from multiple database search engines. J Proteome Res 10(7):2949–2958. https://doi.org/10.1021/pr2002116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Searle BC, Turner M, Nesvizhskii AI (2008) Improving sensitivity by probabilistically combining results from multiple MS/MS search methodologies. J Proteome Res 7(1):245–253. https://doi.org/10.1021/pr070540w

    Article  CAS  PubMed  Google Scholar 

  9. Shteynberg D, Deutsch EW, Lam H, Eng JK, Sun Z, Tasman N, Mendoza L, Moritz RL, Aebersold R, Nesvizhskii AI (2011) iProphet: multi-level integrative analysis of shotgun proteomic data improves peptide and protein identification rates and error estimates. Mol Cell Proteomics 10(12):M111.007690. https://doi.org/10.1074/mcp.M111.007690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sultana T, Jordan R, Lyons-Weiler J (2009) Optimization of the use of consensus methods for the detection and putative identification of peptides via mass spectrometry using protein standard mixtures. J Proteomics Bioinform 2(6):262–273. https://doi.org/10.4172/jpb.1000085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dagda RK, Sultana T, Lyons-Weiler J (2010) Evaluation of the consensus of four peptide identification algorithms for tandem mass spectrometry based proteomics. J Proteomics Bioinform 3:39–47. https://doi.org/10.4172/jpb.1000119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nahnsen S, Bertsch A, Rahnenfuhrer J, Nordheim A, Kohlbacher O (2011) Probabilistic consensus scoring improves tandem mass spectrometry peptide identification. J Proteome Res 10(8):3332–3343. https://doi.org/10.1021/pr2002879

    Article  CAS  PubMed  Google Scholar 

  13. Serang O, Noble W (2012) A review of statistical methods for protein identification using tandem mass spectrometry. Stat Interface 5(1):3–20

    Article  PubMed  PubMed Central  Google Scholar 

  14. He L, Diedrich J, Chu YY, Yates JR 3rd (2015) Extracting accurate precursor information for tandem mass spectra by RawConverter. Anal Chem 87(22):11361–11367. https://doi.org/10.1021/acs.analchem.5b02721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. The M, MacCoss MJ, Noble WS, Kall L (2016) Fast and accurate protein false discovery rates on large-scale proteomics data sets with percolator 3.0. J Am Soc Mass Spectrom 27(11):1719–1727. https://doi.org/10.1007/s13361-016-1460-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vaudel M, Burkhart JM, Zahedi RP, Oveland E, Berven FS, Sickmann A, Martens L, Barsnes H (2015) PeptideShaker enables reanalysis of MS-derived proteomics data sets. Nat Biotechnol 33(1):22–24. https://doi.org/10.1038/nbt.3109

    Article  CAS  PubMed  Google Scholar 

  17. Quandta A, Espona L, Balasko A, Weissera H, Brusniak M, Kunsztb P, Aebersold R, Malmström L (2015) Using synthetic peptides to benchmark peptide identification software and search parameters for MS/MS data analysis. EuPA Open Proteom 5:21–31

    Article  Google Scholar 

  18. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20(18):3551–3567. https://doi.org/10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2

    Article  CAS  PubMed  Google Scholar 

  19. Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5(11):976–989. https://doi.org/10.1016/1044-0305(94)80016-2

    Article  CAS  PubMed  Google Scholar 

  20. Craig R, Beavis RC (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20(9):1466–1467. https://doi.org/10.1093/bioinformatics/bth092

    Article  CAS  PubMed  Google Scholar 

  21. Geer LY, Markey SP, Kowalak JA, Wagner L, Xu M, Maynard DM, Yang X, Shi W, Bryant SH (2004) Open mass spectrometry search algorithm. J Proteome Res 3(5):958–964. https://doi.org/10.1021/pr0499491

    Article  CAS  PubMed  Google Scholar 

  22. Tabb DL, Fernando CG, Chambers MC (2007) MyriMatch: highly accurate tandem mass spectral peptide identification by multivariate hypergeometric analysis. J Proteome Res 6(2):654–661. https://doi.org/10.1021/pr0604054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ternent T, Csordas A, Qi D, Gomez-Baena G, Beynon RJ, Jones AR, Hermjakob H, Vizcaino JA (2014) How to submit MS proteomics data to ProteomeXchange via the PRIDE database. Proteomics 14(20):2233–2241. https://doi.org/10.1002/pmic.201400120

    Article  CAS  PubMed  Google Scholar 

  24. Aggarwal S, Yadav AK (2016) False discovery rate estimation in proteomics. Methods Mol Biol 1362:119–128. https://doi.org/10.1007/978-1-4939-3106-4_7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

R.M. is supported by Fundação para a Ciência e a Tecnologia (FCT investigator program 2012), iNOVA4Health—UID/Multi/04462/2013, a program financially supported by Fundação para a Ciência e Tecnologia/Ministério da Educação e Ciência, through national funds and is cofunded by FEDER under the PT2020 Partnership Agreement. This work is also funded by FEDER funds through the COMPETE 2020 Programme and National Funds through FCT – Portuguese Foundation for Science and Technology under the projects number PTDC/BTM-TEC/30087/2017 and PTDC/BTM-TEC/30088/2017.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Matthiesen, R., Prieto, G., Beck, H.C. (2020). Comparing Peptide Spectra Matches Across Search Engines. In: Matthiesen, R. (eds) Mass Spectrometry Data Analysis in Proteomics. Methods in Molecular Biology, vol 2051. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9744-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9744-2_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9743-5

  • Online ISBN: 978-1-4939-9744-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics