Skip to main content

Genome-Scale Metabolic Modeling from Yeast to Human Cell Models of Complex Diseases: Latest Advances and Challenges

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2049))

Abstract

Genome-scale metabolic models (GEMs) are mathematical models that enable systematic analysis of metabolism. This modeling concept has been applied to study the metabolism of many organisms including the eukaryal model organism, the yeast Saccharomyces cerevisiae, that also serves as an important cell factory for production of fuels and chemicals. With the application of yeast GEMs, our knowledge of metabolism is increasing. Therefore, GEMs have also been used for modeling human cells to study metabolic diseases. Here we introduce the concept of GEMs and provide a protocol for reconstructing GEMs. Besides, we show the historic development of yeast GEMs and their applications. Also, we review human GEMs as well as their uses in the studies of complex diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Edwards JS, Palsson BO (1999) Systems properties of the Haemophilus influenzae Rd metabolic genotype. J Biol Chem 274:17410–17416

    Article  CAS  PubMed  Google Scholar 

  2. King ZA et al (2016) BiGG models: a platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res 44:D515–D522. https://doi.org/10.1093/nar/gkv1049

    Article  CAS  PubMed  Google Scholar 

  3. O'Brien EJ, Monk JM, Palsson BO (2015) Using genome-scale models to predict biological capabilities. Cell 161:971–987. https://doi.org/10.1016/j.cell.2015.05.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang C, Hua Q (2015) Applications of genome-scale metabolic models in biotechnology and systems medicine. Front Physiol 6:413. https://doi.org/10.3389/fphys.2015.00413

    Article  PubMed  Google Scholar 

  5. Bordbar A, Monk JM, King ZA, Palsson BO (2014) Constraint-based models predict metabolic and associated cellular functions. Nat Rev Genet 15:107–120. https://doi.org/10.1038/nrg3643

    Article  CAS  PubMed  Google Scholar 

  6. Thiele I, Palsson BO (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5:93–121. https://doi.org/10.1038/nprot.2009.203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Agren R, Liu L, Shoaie S, Vongsangnak W, Nookaew I, Nielsen J (2013) The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum. PLoS Comput Biol 9:e1002980. https://doi.org/10.1371/journal.pcbi.1002980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45:D353–D361. https://doi.org/10.1093/nar/gkw1092

    Article  CAS  PubMed  Google Scholar 

  9. Goffeau A et al (1996) Life with 6000 genes. Science 274(546):563–547

    Google Scholar 

  10. Forster J, Famili I, Fu P, Palsson BO, Nielsen J (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13:244–253. https://doi.org/10.1101/gr.234503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Reed JL, Vo TD, Schilling CH, Palsson BO (2003) An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 4:R54. https://doi.org/10.1186/gb-2003-4-9-r54

    Article  PubMed  PubMed Central  Google Scholar 

  12. Heavner BD, Price ND (2015) Comparative analysis of yeast metabolic network models highlights progress, opportunities for metabolic reconstruction. PLoS Comput Biol 11:e1004530. https://doi.org/10.1371/journal.pcbi.1004530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Osterlund T, Nookaew I, Bordel S, Nielsen J (2013) Mapping condition-dependent regulation of metabolism in yeast through genome-scale modeling. BMC Syst Biol 7:36. https://doi.org/10.1186/1752-0509-7-36

    Article  PubMed  PubMed Central  Google Scholar 

  14. Duarte NC, Herrgard MJ, Palsson BO (2004) Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res 14:1298–1309. https://doi.org/10.1101/gr.2250904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Herrgard MJ et al (2008) A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat Biotechnol 26:1155–1160. https://doi.org/10.1038/nbt1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nookaew I et al (2008) The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism. BMC Syst Biol 2:71. https://doi.org/10.1186/1752-0509-2-71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mo ML, Palsson BO, Herrgard MJ (2009) Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst Biol 3:37. https://doi.org/10.1186/1752-0509-3-37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dobson PD et al (2010) Further developments towards a genome-scale metabolic model of yeast. BMC Syst Biol 4:145. https://doi.org/10.1186/1752-0509-4-145

    Article  PubMed  PubMed Central  Google Scholar 

  19. Aung HW, Henry SA, Walker LP (2013) Revising the representation of fatty acid, glycerolipid, and glycerophospholipid metabolism in the consensus model of yeast metabolism. Ind Biotechnol (New Rochelle NY) 9:215–228. https://doi.org/10.1089/ind.2013.0013

    Article  CAS  Google Scholar 

  20. Heavner BD, Smallbone K, Price ND, Walker LP (2013) Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance. Database (Oxford) 2013:bat059. https://doi.org/10.1093/database/bat059

    Article  CAS  Google Scholar 

  21. Kuepfer L, Sauer U, Blank LM (2005) Metabolic functions of duplicate genes in Saccharomyces cerevisiae. Genome Res 15:1421–1430. https://doi.org/10.1101/gr.3992505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zomorrodi AR, Maranas CD (2010) Improving the iMM904 S. cerevisiae metabolic model using essentiality and synthetic lethality data. BMC Syst Biol 4:178. https://doi.org/10.1186/1752-0509-4-178

    Article  PubMed  PubMed Central  Google Scholar 

  23. Heavner BD, Smallbone K, Barker B, Mendes P, Walker LP (2012) Yeast 5 – an expanded reconstruction of the Saccharomyces cerevisiae metabolic network. BMC Syst Biol 6:55. https://doi.org/10.1186/1752-0509-6-55

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nookaew I, Olivares-Hernandez R, Bhumiratana S, Nielsen J (2011) Genome-scale metabolic models of Saccharomyces cerevisiae. Methods Mol Biol 759:445–463. https://doi.org/10.1007/978-1-61779-173-4_25

    Article  CAS  PubMed  Google Scholar 

  25. Meadows AL et al (2016) Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature 537:694–69+. https://doi.org/10.1038/nature19769

    Article  CAS  PubMed  Google Scholar 

  26. Long MR, Ong WK, Reed JL (2015) Computational methods in metabolic engineering for strain design. Curr Opin Biotechnol 34:135–141. https://doi.org/10.1016/j.copbio.2014.12.019

    Article  CAS  PubMed  Google Scholar 

  27. Chae TU, Choi SY, Kim JW, Ko YS, Lee SY (2017) Recent advances in systems metabolic engineering tools and strategies. Curr Opin Biotechnol 47:67–82. https://doi.org/10.1016/j.copbio.2017.06.007

    Article  CAS  PubMed  Google Scholar 

  28. Ng CY, Jung MY, Lee J, Oh MK (2012) Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering. Microb Cell Factories 11:68. https://doi.org/10.1186/1475-2859-11-68

    Article  CAS  Google Scholar 

  29. Borodina I et al (2015) Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via beta-alanine. Metab Eng 27:57–64. https://doi.org/10.1016/j.ymben.2014.10.003

    Article  CAS  PubMed  Google Scholar 

  30. Quarterman J, Kim SR, Kim PJ, Jin YS (2015) Enhanced hexose fermentation by Saccharomyces cerevisiae through integration of stoichiometric modeling and genetic screening. J Biotechnol 194:48–57. https://doi.org/10.1016/j.jbiotec.2014.11.017

    Article  CAS  PubMed  Google Scholar 

  31. Xu GQ, Zou W, Chen XL, Xu N, Liu LM, Chen J (2012) Fumaric acid production in Saccharomyces cerevisiae by in silico aided metabolic engineering. PLoS One 7:e52086. https://doi.org/10.1371/journal.pone.0052086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Blazeck J, Miller J, Pan A, Gengler J, Holden C, Jamoussi M, Alper HS (2014) Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production. Appl Microbiol Biotechnol 98:8155–8164. https://doi.org/10.1007/s00253-014-5895-0

    Article  CAS  PubMed  Google Scholar 

  33. Suastegui M et al (2017) Multilevel engineering of the upstream module of aromatic amino acid biosynthesis in Saccharomyces cerevisiae for high production of polymer and drug precursors. Metab Eng 42:134–144. https://doi.org/10.1016/j.ymben.2017.06.008

    Article  CAS  PubMed  Google Scholar 

  34. Agren R, Otero JM, Nielsen J (2013) Genome-scale modeling enables metabolic engineering of Saccharomyces cerevisiae for succinic acid production. J Ind Microbiol Biotechnol 40:735–747. https://doi.org/10.1007/s10295-013-1269-3

    Article  CAS  PubMed  Google Scholar 

  35. Sun Z, Meng H, Li J, Wang J, Li Q, Wang Y, Zhang Y (2014) Identification of novel knockout targets for improving terpenoids biosynthesis in Saccharomyces cerevisiae. PLoS One 9:e112615. https://doi.org/10.1371/journal.pone.0112615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gold ND, Gowen CM, Lussier FX, Cautha SC, Mahadevan R, Martin VJJ (2015) Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics. Microb Cell Factories 14:73. https://doi.org/10.1186/s12934-015-0252-2

    Article  CAS  Google Scholar 

  37. Kildegaard KR et al (2016) Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway. Microb Cell Factories 15:53. https://doi.org/10.1186/s12934-016-0451-5

    Article  CAS  Google Scholar 

  38. Chen Y, Nielsen J (2016) Flux control through protein phosphorylation in yeast. FEMS Yeast Res 16:fow096. https://doi.org/10.1093/femsyr/fow096

    Article  CAS  Google Scholar 

  39. Patil KR, Nielsen J (2005) Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proc Natl Acad Sci U S A 102:2685–2689. https://doi.org/10.1073/pnas.0406811102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chumnanpuen P, Zhang J, Nookaew I, Nielsen J (2012) Integrated analysis of transcriptome and lipid profiling reveals the co-influences of inositol-choline and Snf1 in controlling lipid biosynthesis in yeast. Mol Gen Genomics 287:541–554. https://doi.org/10.1007/s00438-012-0697-5

    Article  CAS  Google Scholar 

  41. Chumnanpuen P, Nookaew I, Nielsen J (2013) Integrated analysis, transcriptome-lipidome, reveals the effects of INO-level (INO2 and INO4) on lipid metabolism in yeast. BMC Syst Biol 7:S7. https://doi.org/10.1186/1752-0509-7-S3-S7

    Article  PubMed  PubMed Central  Google Scholar 

  42. Alff-Tuomala S et al (2016) Xylose-induced dynamic effects on metabolism and gene expression in engineered Saccharomyces cerevisiae in anaerobic glucose-xylose cultures. Appl Microbiol Biotechnol 100:969–985. https://doi.org/10.1007/s00253-015-7038-7

    Article  CAS  PubMed  Google Scholar 

  43. de Jong BW, Siewers V, Nielsen J (2016) Physiological and transcriptional characterization of Saccharomyces cerevisiae engineered for production of fatty acid ethyl esters. FEMS Yeast Res 16:fov105. https://doi.org/10.1093/femsyr/fov105

    Article  CAS  PubMed  Google Scholar 

  44. Schulz JC, Zampieri M, Wanka S, von Mering C, Sauer U (2014) Large-scale functional analysis of the roles of phosphorylation in yeast metabolic pathways. Sci Signal 7:rs6. https://doi.org/10.1126/scisignal.2005602

    Article  CAS  PubMed  Google Scholar 

  45. Salehzadeh-Yazdi A, Asgari Y, Saboury AA, Masoudi-Nejad A (2014) Computational analysis of reciprocal association of metabolism and epigenetics in the budding yeast: a genome-scale metabolic model (GSMM) approach. PLoS One 9:e111686. https://doi.org/10.1371/journal.pone.0111686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Song HS, Reifman J, Wallqvist A (2014) Prediction of metabolic flux distribution from gene expression data based on the flux minimization principle. PLoS One 9:e112524. https://doi.org/10.1371/journal.pone.0112524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen Y, Wang YH, Nielsen J (2017) Systematic inference of functional phosphorylation events in yeast metabolism. Bioinformatics 33:1995–2001. https://doi.org/10.1093/bioinformatics/btx110

    Article  CAS  PubMed  Google Scholar 

  48. Bordbar A, Yurkovich JT, Paglia G, Rolfsson O, Sigurjonsson OE, Palsson BO (2017) Elucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomics. Sci Rep 7:46249. https://doi.org/10.1038/srep46249

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hackett SR et al (2016) Systems-level analysis of mechanisms regulating yeast metabolic flux. Science 354:aaf2786. https://doi.org/10.1126/science.aaf2786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Oliveira AP, Ludwig C, Picotti P, Kogadeeva M, Aebersold R, Sauer U (2012) Regulation of yeast central metabolism by enzyme phosphorylation. Mol Syst Biol 8:623. https://doi.org/10.1038/msb.2012.55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bordel S, Agren R, Nielsen J (2010) Sampling the solution space in genome-scale metabolic networks reveals transcriptional regulation in key enzymes. PLoS Comput Biol 6:e1000859. https://doi.org/10.1371/journal.pcbi.1000859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Martinez JL, Bordel S, Hong KK, Nielsen J (2014) Gcn4p and the Crabtree effect of yeast: drawing the causal model of the Crabtree effect in Saccharomyces cerevisiae and explaining evolutionary trade-offs of adaptation to galactose through systems biology. FEMS Yeast Res 14:654–662. https://doi.org/10.1111/1567-1364.12153

    Article  CAS  PubMed  Google Scholar 

  53. Caspeta L et al (2014) Altered sterol composition renders yeast thermotolerant. Science 346:75–78. https://doi.org/10.1126/science.1258137

    Article  CAS  PubMed  Google Scholar 

  54. Venter JC et al (2001) The sequence of the human genome. Science 291:1304–1351. https://doi.org/10.1126/science.1058040

    Article  CAS  PubMed  Google Scholar 

  55. Duarte NC et al (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci U S A 104:1777–1782. https://doi.org/10.1073/pnas.0610772104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ma HW, Sorokin A, Mazein A, Selkov A, Selkov E, Demin O, Goryanin I (2007) The Edinburgh human metabolic network reconstruction and its functional analysis. Mol Syst Biol 3:135. https://doi.org/10.1038/msb4100177

    Article  PubMed  PubMed Central  Google Scholar 

  57. Agren R, Bordel S, Mardinoglu A, Pornputtapong N, Nookaew I, Nielsen J (2012) Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Comput Biol 8:e1002518. https://doi.org/10.1371/journal.pcbi.1002518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mardinoglu A, Agren R, Kampf C, Asplund A, Uhlen M, Nielsen J (2014) Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease. Nat Commun 5:3083. https://doi.org/10.1038/ncomms4083

    Article  CAS  PubMed  Google Scholar 

  59. Thiele I et al (2013) A community-driven global reconstruction of human metabolism. Nat Biotechnol 31:419–41+. https://doi.org/10.1038/nbt.2488

    Article  CAS  PubMed  Google Scholar 

  60. Uhlen M et al (2010) Towards a knowledge-based Human Protein Atlas. Nat Biotechnol 28:1248–1250. https://doi.org/10.1038/nbt1210-1248

    Article  CAS  PubMed  Google Scholar 

  61. Shlomi T, Cabili MN, Herrgard MJ, Palsson BO, Ruppin E (2008) Network-based prediction of human tissue-specific metabolism. Nat Biotechnol 26:1003–1010. https://doi.org/10.1038/nbt.1487

    Article  CAS  PubMed  Google Scholar 

  62. Uhlen M et al (2015) Tissue-based map of the human proteome. Science 347:1260419. https://doi.org/10.1126/science.1260419

    Article  CAS  PubMed  Google Scholar 

  63. Agren R, Mardinoglu A, Asplund A, Kampf C, Uhlen M, Nielsen J (2014) Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modeling. Mol Syst Biol 10. https://doi.org/10.1002/msb.145122

  64. Yizhak K et al (2014) Phenotype-based cell-specific metabolic modeling reveals metabolic liabilities of cancer. elife 3:e03641. https://doi.org/10.7554/eLife.03641

    Article  PubMed Central  Google Scholar 

  65. Varemo L et al (2016) Proteome- and transcriptome-driven reconstruction of the human myocyte metabolic network and its use for identification of markers for diabetes (vol. 11, p. 921, 2015). Cell Rep 14:1567–1567. https://doi.org/10.1016/j.celrep.2016.01.054

    Article  CAS  PubMed  Google Scholar 

  66. Folger O, Jerby L, Frezza C, Gottlieb E, Ruppin E, Shlomi T (2011) Predicting selective drug targets in cancer through metabolic networks. Mol Syst Biol 7:501. https://doi.org/10.1038/msb.2011.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Buchel F, Saliger S, Drager A, Hoffmann S, Wrzodek C, Zell A, Kahle PJ (2013) Parkinson’s disease: dopaminergic nerve cell model is consistent with experimental finding of increased extracellular transport of alpha-synuclein. BMC Neurosci 14:136. https://doi.org/10.1186/1471-2202-14-136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rabinovich S et al (2015) Diversion of aspartate in ASS1-deficient tumours fosters de novo pyrimidine synthesis. Nature 527:379–37+. https://doi.org/10.1038/nature15529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mardinoglu A et al (2013) Integration of clinical data with a genome-scale metabolic model of the human adipocyte. Mol Syst Biol 9:649. https://doi.org/10.1038/msb.2013.5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shlomi T, Cabili MN, Ruppin E (2009) Predicting metabolic biomarkers of human inborn errors of metabolism. Mol Syst Biol 5:263. https://doi.org/10.1038/msb.2009.22

    Article  PubMed  PubMed Central  Google Scholar 

  71. Gatto F et al (2016) Glycosaminoglycan profiling in patients’ plasma and urine predicts the occurrence of metastatic clear cell renal cell carcinoma. Cell Rep 15:1822–1836. https://doi.org/10.1016/j.celrep.2016.04.056

    Article  CAS  PubMed  Google Scholar 

  72. Lerman JA et al (2012) In silico method for modelling metabolism and gene product expression at genome scale. Nat Commun 3:929. https://doi.org/10.1038/ncomms1928

    Article  CAS  PubMed  Google Scholar 

  73. O'Brien EJ, Lerman JA, Chang RL, Hyduke DR, Palsson BO (2013) Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction. Mol Syst Biol 9:693. https://doi.org/10.1038/msb.2013.52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Feizi A, Osterlund T, Petranovic D, Bordel S, Nielsen J (2013) Genome-scale modeling of the protein secretory machinery in yeast. PLoS One 8:e63284. https://doi.org/10.1371/journal.pone.0063284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sanchez BJ, Zhang C, Nilsson A, Lahtvee PJ, Kerkhoven EJ, Nielsen J (2017) Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints. Mol Syst Biol 13:935. https://doi.org/10.15252/msb.20167411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Nielsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chen, Y., Li, G., Nielsen, J. (2019). Genome-Scale Metabolic Modeling from Yeast to Human Cell Models of Complex Diseases: Latest Advances and Challenges. In: Oliver, S.G., Castrillo, J.I. (eds) Yeast Systems Biology. Methods in Molecular Biology, vol 2049. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9736-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9736-7_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9735-0

  • Online ISBN: 978-1-4939-9736-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics