Skip to main content

Data Management in Computational Systems Biology: Exploring Standards, Tools, Databases, and Packaging Best Practices

  • Protocol
  • First Online:
Yeast Systems Biology

Abstract

Computational systems biology involves integrating heterogeneous datasets in order to generate models. These models can assist with understanding and prediction of biological phenomena. Generating datasets and integrating them into models involves a wide range of scientific expertise. As a result these datasets are often collected by one set of researchers, and exchanged with others researchers for constructing the models. For this process to run smoothly the data and models must be FAIR—findable, accessible, interoperable, and reusable. In order for data and models to be FAIR they must be structured in consistent and predictable ways, and described sufficiently for other researchers to understand them. Furthermore, these data and models must be shared with other researchers, with appropriately controlled sharing permissions, before and after publication. In this chapter we explore the different data and model standards that assist with structuring, describing, and sharing. We also highlight the popular standards and sharing databases within computational systems biology.

Natalie J. Stanford and Martin Scharm share joint lead authorship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.vph-institute.org/

  2. 2.

    http://www.vmh.life

  3. 3.

    http://www.virtual-liver.de/

  4. 4.

    A website that collects and monitors retracted research results: http://retractionwatch.com/

  5. 5.

    http://co.mbine.org

  6. 6.

    https://fairsharing.org/collection/MIBBI

  7. 7.

    https://fairdom.eu

  8. 8.

    https://fairsharing.org/collection/FAIRDOM

  9. 9.

    http://project.isbe.eu/

  10. 10.

    https://www.w3.org/XML/

  11. 11.

    https://www.w3.org/Math/

  12. 12.

    http://sbml.org/SBML_Software_Guide/SBML_Software_Matrix

  13. 13.

    https://www.cellml.org/tools

  14. 14.

    https://sed-ml.github.io/showcase.html

  15. 15.

    https://github.com/numl/numl

  16. 16.

    https://github.com/NuML/NuML/tree/master/libnuml

  17. 17.

    https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

  18. 18.

    https://www.ebi.ac.uk/sbo/main/

  19. 19.

    http://co.mbine.org/standards/kisao

  20. 20.

    http://co.mbine.org/standards/teddy/

  21. 21.

    http://jermontology.org/

  22. 22.

    http://copasi.org/

  23. 23.

    http://opencor.ws

  24. 24.

    http://jjj.biochem.sun.ac.za/

  25. 25.

    https://opencobra.github.io/

  26. 26.

    https://neo4j.com/

  27. 27.

    https://bitbucket.org/jummp/jummp

  28. 28.

    https://git-scm.com/

  29. 29.

    https://fairdomhub.org/

  30. 30.

    https://semsproject.github.io/BiVeS/

  31. 31.

    http://www.opensourcebrain.org/

  32. 32.

    http://bigg.ucsd.edu

  33. 33.

    https://cat.bio.informatik.uni-rostock.de/

  34. 34.

    http://sysbioapps.dyndns.org/SED-ML_Web_Tools/

  35. 35.

    http://vcell.org

  36. 36.

    https://github.com/SemsProject/CombineArchiveShowCase/

  37. 37.

    http://validation.scienceexchange.com/

  38. 38.

    http://www.dataone.org

References

  1. Noble D (2008) The music of life: biology beyond genes. Oxford University Press, Oxford, MI. OUP Oxford Paperback

    Google Scholar 

  2. Hoppensteadt FC, Peskin CS, Hoppensteadt FC (2002) Modeling and simulation in medicine and the life sciences. Texts in applied mathematics, vol 10, 2nd edn. Springer, New York, NY

    Google Scholar 

  3. Klipp E, Liebermeister W, Wierling C, Kowald A (2016) Systems biology: a textbook. 2nd edn. Wiley-Blackwell, Hoboken, NJ

    Google Scholar 

  4. Henkel R, Endler L, Peters A, Le Novere N, Waltemath D (2010) Ranked retrieval of computational biology models. BMC Bioinformatics 11:423. https://doi.org/10.1186/1471-2105-11-423

    Article  PubMed  PubMed Central  Google Scholar 

  5. Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novere N, Laibe C (2010) BioModels Database: an enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol 4:92. https://doi.org/10.1186/1752-0509-4-92

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yu T, Lloyd CM, Nickerson DP, Cooling MT, Miller AK, Garny A, Terkildsen JR, Lawson J, Britten RD, Hunter PJ, Nielsen PM (2011) The physiome model repository 2. Bioinformatics 27(5):743–744. https://doi.org/10.1093/bioinformatics/btq723

    Article  CAS  PubMed  Google Scholar 

  7. Olson GM, Zimmerman A (2008) Scientific collaboration on the Internet. MIT Press, Cambridge, MA

    Book  Google Scholar 

  8. Hunter PJ (2006) Modeling human physiology: the IUPS/EMBS Physiome Project. Proc IEEE 94(4):678–691. https://doi.org/10.1009/Jpoc.2006.871767

    Article  Google Scholar 

  9. Swainston N, Smallbone K, Hefzi H, Dobson PD, Brewer J, Hanscho M, Zielinski DC, Ang KS, Gardiner NJ, Gutierrez JM, Kyriakopoulos S, Lakshmanan M, Li S, Liu JK, Martinez VS, Orellana CA, Quek LE, Thomas A, Zanghellini J, Borth N, Lee DY, Nielsen LK, Kell DB, Lewis NE, Mendes P (2016) Recon 2.2: from reconstruction to model of human metabolism. Metabolomics 12:109. https://doi.org/10.1007/s11306-016-1051-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Thiele I, Swainston N, Fleming RM, Hoppe A, Sahoo S, Aurich MK, Haraldsdottir H, Mo ML, Rolfsson O, Stobbe MD, Thorleifsson SG, Agren R, Bolling C, Bordel S, Chavali AK, Dobson P, Dunn WB, Endler L, Hala D, Hucka M, Hull D, Jameson D, Jamshidi N, Jonsson JJ, Juty N, Keating S, Nookaew I, Le Novere N, Malys N, Mazein A, Papin JA, Price ND, Selkov E Sr, Sigurdsson MI, Simeonidis E, Sonnenschein N, Smallbone K, Sorokin A, van Beek JH, Weichart D, Goryanin I, Nielsen J, Westerhoff HV, Kell DB, Mendes P, Palsson BO (2013) A community-driven global reconstruction of human metabolism. Nat Biotechnol 31(5):419–425. https://doi.org/10.1038/nbt.2488

    Article  CAS  PubMed  Google Scholar 

  11. Holzhütter HG, Drasdo D, Preusser T, Lippert J, Henney AM (2012) The virtual liver: a multidisciplinary, multilevel challenge for systems biology. Wiley Interdiscip Rev Syst Biol Med 4(3):221–235. https://doi.org/10.1002/wsbm.1158

    Article  CAS  PubMed  Google Scholar 

  12. Blaustein R (2014) Reproducibility undergoes scrutiny. Bioscience 64(4):368. https://doi.org/10.1093/biosci/biu017

    Article  Google Scholar 

  13. Economist TE (2014) How science goes wrong. De Economist

    Google Scholar 

  14. Arrowsmith J (2011) Trial watch: phase II failures: 2008–2010. Nat Rev Drug Discov 10(5):328–329. https://doi.org/10.1038/nrd3439

    Article  CAS  PubMed  Google Scholar 

  15. Begley CG, Ellis LM (2012) Raise standards for preclinical cancer research. Nature 483(7391):531–533

    Article  CAS  Google Scholar 

  16. Mullard A (2011) Reliability of ‘new drug target’ claims called into question. Nat Rev Drug Discov 10(9):643–644. https://doi.org/10.1038/nrd3545

    Article  CAS  PubMed  Google Scholar 

  17. Prinz F, Schlange T, Asadullah K (2011) Believe it or not: how much can we rely on published data on potential drug targets? Nat Rev Drug Discov 10(9):712–U781. https://doi.org/10.1038/nrd3439-c1

    Article  CAS  PubMed  Google Scholar 

  18. Bell AW, Deutsch EW, Au CE, Kearney RE, Beavis R, Sechi S, Nilsson T, Bergeron JJ, Group HTSW (2009) A HUPO test sample study reveals common problems in mass spectrometry-based proteomics. Nat Methods 6(6):423–430. https://doi.org/10.1038/nmeth.1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ioannidis JP, Allison DB, Ball CA, Coulibaly I, Cui X, Culhane AC, Falchi M, Furlanello C, Game L, Jurman G, Mangion J, Mehta T, Nitzberg M, Page GP, Petretto E, van Noort V (2009) Repeatability of published microarray gene expression analyses. Nat Genet 41(2):149–155. https://doi.org/10.1038/ng.295

    Article  CAS  PubMed  Google Scholar 

  20. Garijo D, Kinnings S, Xie L, Xie L, Zhang Y, Bourne PE, Gil Y (2013) Quantifying reproducibility in computational biology: the case of the tuberculosis drugome. PLoS One 8(11):e80278. https://doi.org/10.1371/journal.pone.0080278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Topalidou M, Leblois A, Boraud T, Rougier NP (2015) A long journey into reproducible computational neuroscience. Front Comput Neurosci 9. https://doi.org/10.3389/fncom.2015.00030

  22. Errington TM, Iorns E, Gunn W, Tan FE, Lomax J, Nosek BA (2014) An open investigation of the reproducibility of cancer biology research. elife 3. https://doi.org/10.7554/eLife.04333

  23. Waltemath D, Wolkenhauer O (2016) How modeling standards, software, and initiatives support reproducibility in systems biology and systems medicine. IEEE Ttrans Bio-Med Eng 63(10):1999–2006. https://doi.org/10.1109/Tbme.2016.2555481

    Article  Google Scholar 

  24. Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, Blomberg N, Boiten JW, Santos LBD, Bourne PE, Bouwman J, Brookes AJ, Clark T, Crosas M, Dillo I, Dumon O, Edmunds S, Evelo CT, Finkers R, Gonzalez-Beltran A, Gray AJG, Groth P, Goble C, Grethe JS, Heringa J, t’ Hoen PAC, Hooft R, Kuhn T, Kok R, Kok J, Lusher SJ, Martone ME, Mons A, Packer AL, Persson B, Rocca-Serra P, Roos M, van Schaik R, Sansone SA, Schultes E, Sengstag T, Slater T, Strawn G, Swertz MA, Thompson M, van der Lei J, van Mulligen E, Velterop J, Waagmeester A, Wittenburg P, Wolstencroft K, Zhao J, Mons B (2016) Comment: the FAIR guiding principles for scientific data management and stewardship. Sci Data 3. https://doi.org/10.1038/sdata.2016.18

  25. Hucka M, Nickerson DP, Bader GD, Bergmann FT, Cooper J, Demir E, Garny A, Golebiewski M, Myers CJ, Schreiber F, Waltemath D, Le Novere N (2015) Promoting coordinated development of community-based information standards for modeling in biology: the COMBINE initiative. Front Bioeng Biotechnol 3:19. https://doi.org/10.3389/fbioe.2015.00019

    Article  PubMed  PubMed Central  Google Scholar 

  26. Stromback L, Hall D, Lambrix P (2007) A review of standards for data exchange within systems biology. Proteomics 7(6):857–867. https://doi.org/10.1002/pmic.200600438

    Article  CAS  PubMed  Google Scholar 

  27. Klipp E, Liebermeister W, Helbig A, Kowald A, Schaber J (2007) Systems biology standards—the community speaks. Nat Biotechnol 25(4):390–391. https://doi.org/10.1038/nbt0407-390

    Article  CAS  PubMed  Google Scholar 

  28. Taylor CF, Field D, Sansone SA, Aerts J, Apweiler R, Ashburner M, Ball CA, Binz PA, Bogue M, Booth T, Brazma A, Brinkman RR, Clark AM, Deutsch EW, Fiehn O, Fostel J, Ghazal P, Gibson F, Gray T, Grimes G, Hancock JM, Hardy NW, Hermjakob H, Julian RK, Kane M, Kettner C, Kinsinger C, Kolker E, Kuiper M, Le Novere N, Leebens-Mack J, Lewis SE, Lord P, Mallon AM, Marthandan N, Masuya H, McNally R, Mehrle A, Morrison N, Orchard S, Quackenbush J, Reecy JM, Robertson DG, Rocca-Serra P, Rodriguez H, Rosenfelder H, Santoyo-Lopez J, Scheuermann RH, Schober D, Smith B, Snape J, Stoeckert CJ, Tipton K, Sterk P, Untergasser A, Vandesompele J, Wiemann S (2008) Promoting coherent minimum reporting guidelines for biological and biomedical investigations: the MIBBI project. Nat Biotechnol 26(8):889–896. https://doi.org/10.1038/nbt.1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FC, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29(4):365–371. https://doi.org/10.1038/ng1201-365

    Article  CAS  PubMed  Google Scholar 

  30. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ, Angiuoli SV, Ashburner M, Axelrod N, Baldauf S, Ballard S, Boore J, Cochrane G, Cole J, Dawyndt P, De Vos P, dePamphilis C, Edwards R, Faruque N, Feldman R, Gilbert J, Gilna P, Glockner FO, Goldstein P, Guralnick R, Haft D, Hancock D, Hermjakob H, Hertz-Fowler C, Hugenholtz P, Joint I, Kagan L, Kane M, Kennedy J, Kowalchuk G, Kottmann R, Kolker E, Kravitz S, Kyrpides N, Leebens-Mack J, Lewis SE, Li K, Lister AL, Lord P, Maltsev N, Markowitz V, Martiny J, Methe B, Mizrachi I, Moxon R, Nelson K, Parkhill J, Proctor L, White O, Sansone SA, Spiers A, Stevens R, Swift P, Taylor C, Tateno Y, Tett A, Turner S, Ussery D, Vaughan B, Ward N, Whetzel T, Gil IS, Wilson G, Wipat A (2008) The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol 26(5):541–547. https://doi.org/10.1038/nbt1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Taylor CF, Paton NW, Lilley KS, Binz PA, Julian RK, Jones AR, Zhu WM, Apweiler R, Aebersold R, Deutsch EW, Dunn MJ, Heck AJR, Leitner A, Macht M, Mann M, Martens L, Neubert TA, Patterson SD, Ping PP, Seymour SL, Souda P, Tsugita A, Vandekerckhove J, Vondriska TM, Whitelegge JP, Wilkins MR, Xenarios I, Yates JR, Hermjakob H (2007) The minimum information about a proteomics experiment (MIAPE). Nat Biotechnol 25(8):887–893. https://doi.org/10.1038/nbt1329

    Article  CAS  PubMed  Google Scholar 

  32. Quinn TA, Granite S, Allessie MA, Antzelevitch C, Bollensdorff C, Bub G, Burton RAB, Cerbai E, Chen PS, Delmar M, DiFrancesco D, Earm YE, Efimov IR, Egger M, Entcheva E, Fink M, Fischmeister R, Franz MR, Garny A, Giles WR, Hannes T, Harding SE, Hunter PJ, Iribe G, Jalife J, Johnson CR, Kass RS, Kodama I, Koren G, Lord P, Markhasin VS, Matsuoka S, McCulloch AD, Mirams GR, Morley GE, Nattel S, Noble D, Olesen SP, Panfilov AV, Trayanova NA, Ravens U, Richard S, Rosenbaum DS, Rudy Y, Sachs F, Sachse FB, Saint DA, Schotten U, Solovyova O, Taggart P, Tung L, Varro A, Volders PG, Wang K, Weiss JN, Wettwer E, White E, Wilders R, Winslow RL, Kohl P (2011) Minimum Information about a Cardiac Electrophysiology Experiment (MICEE): standardised reporting for model reproducibility, interoperability, and data sharing. Prog Biophys Mol Biol 107(1):4–10. https://doi.org/10.1016/j.pbiomolbio.2011.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stanford NJ, Wolstencroft K, Golebiewski M, Kania R, Juty N, Tomlinson C, Owen S, Butcher S, Hermjakob H, Le Novere N, Mueller W, Snoep J, Goble C (2015) The evolution of standards and data management practices in systems biology. Mol Syst Biol 11(12):851

    Article  Google Scholar 

  34. Hucka M, Bergmann FT, Chaoulya C, Draeger A, Hoops S, Keating SM, König M, Le Novére N, Myers CJ, Olivier B, Sahle S, Schaff JC, Sheriff R, Smith LP, Waltemath D, Wilkinson DJ (2019) The Systems Biology Markup Language (SBML): language specification for level 3 version 2 core release 2. J Integr Bioinform 16(2). https://doi.org/10.1515/jib-2019-0021

  35. Cuellar AA, Lloyd CM, Nielsen PF, Bullivant DP, Nickerson DP, Hunter PJ (2003) An overview of CellML 1.1, a biological model description language. Simulation 79(12):740–747

    Article  Google Scholar 

  36. Cannon RC, Gleeson P, Crook S, Ganapathy G, Marin B, Piasini E, Silver RA (2014) LEMS: A language for expressing complex biological models in concise and hierarchical form and its use in underpinning Neur oML 2. Frontiers in Neuroinformatics 8:79. https://doi.org/10.3389/fninf.2014.00079

  37. Gauges R, Rost U, Sahle S, Wengler K, Bergmann FT (2015) The Systems Biology Markup Language (SBML) Level 3 package: layout, version 1 core. J Integr Bioinform 12(2). https://doi.org/10.2390/biecoll-jib-2015-267

  38. Bergmann F, Olivier B (2010) SBML level 3 package proposal: flux. Nat Preced. https://doi.org/10.1038/npre.2010.4236.1

  39. Olivier B, Bergmann F (2015) SBML level 3 flux balance constraints package version 2 release 1

    Google Scholar 

  40. Smith LP, Hucka M, Hoops S, Finney A (2015) SBML level 3 package: hierarchical model composition, version 1 release 3. https://doi.org/10.2390/biecoll-jib-2015-268

    Book  Google Scholar 

  41. Smith LP, Hucka M, Hoops S, Finney A (2013) SBML level 3 hierarchical model composition package version 1 release 3

    Google Scholar 

  42. hucka M, Smith LP (2016) SBML level 3 package: groups, version 1 release 1. https://doi.org/10.2390/biecoll-jib-2016-290

    Book  Google Scholar 

  43. Maxwell Lewis Neal, Matthias König, David Nickerson, G­ksel Mısırlı, Reza Kalbasi, Andreas Drðger, Koray Atalag, Vijayalakshmi Chelliah, Michael T Cooling, Daniel L Cook, Sharon Crook, Miguel de Alba, Samuel H Friedman, Alan Garny, John H Gennari, Padraig Gleeson, Martin Golebiewski, Michael Hucka, Nick Juty, Chris Myers, Brett G Olivier, Herbert M Sauro, Martin Scharm, Jacky L Snoep, Vasundra Touré, Anil Wipat, Olaf Wolkenhauer, Dagmar Waltemath (2019) Harmonizing semantic annotations for computational models in biology. Briefings in Bioinformatics 20 (2):540–550

    Google Scholar 

  44. Hucka M, Bergmann F, Hoops S, Keating S, Sahle S, Wilkinson DJ (2010) The Systems Biology Markup Language (SBML): language specification for level 3 version 1 core (release 1 candidate). Nat Preced. https://doi.org/10.1038/npre.2010.4123.1

  45. Lassila O, Swick RR (1999) Resource Description Framework (RDF) model and syntax specification. W3C recommendation 22 Feb 1999

    Google Scholar 

  46. Le Novere N, Finney A, Hucka M, Bhalla US, Campagne F, Collado-Vides J, Crampin EJ, Halstead M, Klipp E, Mendes P, Nielsen P, Sauro H, Shapiro B, Snoep JL, Spence HD, Wanner BL (2005) Minimum information requested in the annotation of biochemical models (MIRIAM). Nat Biotechnol 23(12):1509–1515. https://doi.org/10.1038/nbt1156

    Article  CAS  PubMed  Google Scholar 

  47. Juty N, Le Novere N, Laibe C (2012) Identifiers.org and MIRIAM registry: community resources to provide persistent identification. Nucleic Acids Res 40(Database issue):D580–D586. https://doi.org/10.1093/nar/gkr1097

    Article  CAS  PubMed  Google Scholar 

  48. Editors S (2017) SBML software guide

    Google Scholar 

  49. Hedley WJ, Nelson MR (2001) CellML 1.0 Specification—CellML. https://www.cellml.org/specifications/cellml_1.0

    Google Scholar 

  50. Lloyd CM, Halstead MD, Nielsen PF (2004) CellML: its future, present and past. Prog Biophys Mol Biol 85(2–3):433–450. https://doi.org/10.1016/j.pbiomolbio.2004.01.004

    Article  CAS  PubMed  Google Scholar 

  51. Wimalaratne SM, Halstead MD, Lloyd CM, Cooling MT, Crampin EJ, Nielsen PF (2009) Facilitating modularity and reuse: guidelines for structuring CellML 1.1 models by isolating common biophysical concepts. Exp Physiol 94(5):472–485. https://doi.org/10.1113/expphysiol.2008.045161

    Article  CAS  PubMed  Google Scholar 

  52. Beard DA, Britten R, Cooling MT, Garny A, Halstead MD, Hunter PJ, Lawson J, Lloyd CM, Marsh J, Miller A, Nickerson DP, Nielsen PM, Nomura T, Subramanium S, Wimalaratne SM, Yu T (2009) CellML metadata standards, associated tools and repositories. Philos Trans A Math Phys Eng Sci 367(1895):1845–1867. https://doi.org/10.1098/rsta.2008.0310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wimalaratne SM, Halstead MD, Lloyd CM, Crampin EJ, Nielsen PF (2009) Biophysical annotation and representation of CellML models. Bioinformatics 25(17):2263–2270. https://doi.org/10.1093/bioinformatics/btp391

    Article  CAS  PubMed  Google Scholar 

  54. Garny A, Nickerson DP, Cooper J, Weber dos Santos R, Miller AK, McKeever S, Nielsen PM, Hunter PJ (2008) CellML and associated tools and techniques. Philos Trans A Math Phys Eng Sci 366(1878):3017–3043. https://doi.org/10.1098/rsta.2008.0094

    Article  PubMed  Google Scholar 

  55. Courtot M, Juty N, Knupfer C, Waltemath D, Zhukova A, Drager A, Dumontier M, Finney A, Golebiewski M, Hastings J, Hoops S, Keating S, Kell DB, Kerrien S, Lawson J, Lister A, Lu J, Machne R, Mendes P, Pocock M, Rodriguez N, Villeger A, Wilkinson DJ, Wimalaratne S, Laibe C, Hucka M, Le Novere N (2011) Controlled vocabularies and semantics in systems biology. Mol Syst Biol 7:543. https://doi.org/10.1038/msb.2011.77

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kitano H, Funahashi A, Matsuoka Y, Oda K (2005) Using process diagrams for the graphical representation of biological networks. Nat Biotechnol 23(8):961–966. https://doi.org/10.1038/nbt1111

    Article  CAS  PubMed  Google Scholar 

  57. Le Novere N, Hucka M, Mi H, Moodie S, Schreiber F, Sorokin A, Demir E, Wegner K, Aladjem MI, Wimalaratne SM, Bergman FT, Gauges R, Ghazal P, Kawaji H, Li L, Matsuoka Y, Villeger A, Boyd SE, Calzone L, Courtot M, Dogrusoz U, Freeman TC, Funahashi A, Ghosh S, Jouraku A, Kim S, Kolpakov F, Luna A, Sahle S, Schmidt E, Watterson S, Wu G, Goryanin I, Kell DB, Sander C, Sauro H, Snoep JL, Kohn K, Kitano H (2009) The systems biology graphical notation. Nat Biotechnol 27(8):735–741. https://doi.org/10.1038/nbt.1558

    Article  CAS  PubMed  Google Scholar 

  58. Moodie S, Le Novere N, Demir E, Mi H, Villeger A (2015) Systems biology graphical notation: process description language level 1 version 1.3. J Integr Bioinform 12(2):263. https://doi.org/10.2390/biecoll-jib-2015-263

    Article  PubMed  Google Scholar 

  59. Sorokin A, Le Novere N, Luna A, Czauderna T, Demir E, Haw R, Mi H, Moodie S, Schreiber F, Villeger A (2015) Systems biology graphical notation: entity relationship language level 1 version 2. J Integr Bioinform 12(2):264. https://doi.org/10.2390/biecoll-jib-2015-264

    Article  PubMed  Google Scholar 

  60. Mi H, Schreiber F, Moodie S, Czauderna T, Demir E, Haw R, Luna A, Le Novere N, Sorokin A, Villeger A (2015) Systems biology graphical notation: activity flow language level 1 version 1.2. J Integr Bioinform 12(2):265. https://doi.org/10.2390/biecoll-jib-2015-265

    Article  PubMed  Google Scholar 

  61. van Iersel MP, Villeger AC, Czauderna T, Boyd SE, Bergmann FT, Luna A, Demir E, Sorokin A, Dogrusoz U, Matsuoka Y, Funahashi A, Aladjem MI, Mi H, Moodie SL, Kitano H, Le Novere N, Schreiber F (2012) Software support for SBGN maps: SBGN-ML and LibSBGN. Bioinformatics 28(15):2016–2021. https://doi.org/10.1093/bioinformatics/bts270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vasundra Touré, Nicolas Le Novère, Dagmar Waltemath, Olaf Wolkenhauer, Francis Ouellette (2018) Quick tips for creating effective and impactful biological pathways using the Systems Biology Graphical Notation. PLOS Computational Biology 14(2):e1005740

    Google Scholar 

  63. Waltemath D, Adams R, Bergmann FT, Hucka M, Kolpakov F, Miller AK, Moraru II, Nickerson D, Sahle S, Snoep JL, Le Novere N (2011) Reproducible computational biology experiments with SED-ML—the simulation experiment description markup language. BMC Syst Biol 5:198. https://doi.org/10.1186/1752-0509-5-198

    Article  PubMed  PubMed Central  Google Scholar 

  64. Waltemath D, Adams R, Beard DA, Bergmann FT, Bhalla US, Britten R, Chelliah V, Cooling MT, Cooper J, Crampin EJ, Garny A, Hoops S, Hucka M, Hunter P, Klipp E, Laibe C, Miller AK, Moraru I, Nickerson D, Nielsen P, Nikolski M, Sahle S, Sauro HM, Schmidt H, Snoep JL, Tolle D, Wolkenhauer O, Le Novere N (2011) Minimum information about a simulation experiment (MIASE). PLoS Comput Biol 7(4):e1001122. https://doi.org/10.1371/journal.pcbi.1001122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bergmann FT, Cooper J, König M, Moraru I, Nickerson D, Le Novére N, Olivier BG, Sahle S, Smith L, Waltemath D (2018) Simulation Experiment Description Markup Language (SED-ML): level 1 version 3 (l1 v3). J Integr Bioinform 15(1). https://doi.org/10.1515/jib-2017-0086

  66. Kolpakov F (2002) BIOUML – framework for visual modeling and simualtion biological systems. Proceedings of the international conference on bioinformatics of genome regulation and structure

    Google Scholar 

  67. Kolpakov F, Tolstykh NI, Valeev TF, Kiselev IN, Kutumova E, Ryabova A, Yevshin I, Kel A (2011) BIO-UML open source plug-in based platform for bioinformatics: invitation to collaboration. Proceedings of the international Moscow conference on computational molecular biology

    Google Scholar 

  68. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U (2006) COPASI—a COmplex PAthway SImulator. Bioinformatics 22(24):3067–3074. https://doi.org/10.1093/bioinformatics/btl485

    Article  CAS  PubMed  Google Scholar 

  69. Olivier BG, Snoep JL (2004) Web-based kinetic modelling using JWS online. Bioinformatics 20(13):2143–2144. https://doi.org/10.1093/bioinformatics/bth200

    Article  CAS  PubMed  Google Scholar 

  70. Snoep JL, Olivier BG (2003) JWS online cellular systems modelling and microbiology. Microbiology 149(Pt 11):3045–3047. https://doi.org/10.1099/mic.0.C0124-0

    Article  CAS  PubMed  Google Scholar 

  71. Sauro HM, Choi K, Medley JK, Cannistra C (2016) Tellurium: a python based modeling and reproducibility platform for systems biology. bioRxiv. https://doi.org/10.1101/054601

  72. Zhukova A, Adams R, Laibe C, Le Novere N (2012) LibKiSAO: a Java library for Querying KiSAO. BMC Res Notes 5:520. https://doi.org/10.1186/1756-0500-5-520

    Article  PubMed  PubMed Central  Google Scholar 

  73. Shafranovich Y (2005) Common format and MIME type for comma-separated values (CSV) files. The Internet Society, Reston, VA

    Book  Google Scholar 

  74. Klink P (2016) FieldedText. http://www.fieldedtext.org/. Accessed 1 May 2017

    Google Scholar 

  75. Dada JO, Spasic I, Paton NW, Mendes P (2010) SBRML: a markup language for associating systems biology data with models. Bioinformatics 26(7):932–938. https://doi.org/10.1093/bioinformatics/btq069

    Article  CAS  PubMed  Google Scholar 

  76. Scharm M, Waltemath D (2016) A fully featured COMBINE archive of a simulation study on syncytial mitotic cycles in Drosophila embryos. F1000 Research 5:2421. https://doi.org/10.12688/f1000research.9379.1

    Article  PubMed  Google Scholar 

  77. Gennari JH, Neal ML, Galdzicki M, Cook DL (2011) Multiple ontologies in action: composite annotations for biosimulation models. J Biomed Inform 44(1):146–154. https://doi.org/10.1016/j.jbi.2010.06.007

    Article  PubMed  Google Scholar 

  78. Finney A, Hucka M, Bornstein BJ, Keating SM, Shapiro BE (2006) Software infrastructure for effective communication and reuse of computational models. In: Szallasi Z, Stelling J, Periwal V (eds) System modeling in cell biology: from concepts to nuts & bolts. MIT Press, Cambridge, MA, pp 355–378

    Chapter  Google Scholar 

  79. Misirli G, Cavaliere M, Waites W, Pocock M, Madsen C, Gilfellon O, Honorato-Zimmer R, Zuliani P, Danos V, Wipat A (2016) Annotation of rule-based models with formal semantics to enable creation, analysis, reuse and visualization. Bioinformatics 32(6):908–917. https://doi.org/10.1093/bioinformatics/btv660

    Article  CAS  PubMed  Google Scholar 

  80. Swainston N, Mendes P (2009) libAnnotationSBML: a library for exploiting SBML annotations. Bioinformatics 25(17):2292–2293. https://doi.org/10.1093/bioinformatics/btp392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rodriguez N, Pettit JB, Dalle Pezze P, Li L, Henry A, van Iersel MP, Jalowicki G, Kutmon M, Natarajan KN, Tolnay D, Stefan MI, Evelo CT, Le Novere N (2016) The systems biology format converter. BMC Bioinformatics 17:154. https://doi.org/10.1186/s12859-016-1000-2

    Article  PubMed  PubMed Central  Google Scholar 

  82. Dräger A, Planatscher H, Motsou Wouamba D, Schröder A, Hucka M, Endler L, Golebiewski M, Müller W, Zell A (2009) SBML2L(A)T(E)X: conversion of SBML files into human-readable reports. Bioinformatics 25(11):1455–1456. https://doi.org/10.1093/bioinformatics/btp170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shen SY, Bergmann F, Sauro HM (2010) SBML2TikZ: supporting the SBML render extension in LaTeX. Bioinformatics 26(21):2794–2795. https://doi.org/10.1093/bioinformatics/btq512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Junker A, Rohn H, Czauderna T, Klukas C, Hartmann A, Schreiber F (2012) Creating interactive, web-based and data-enriched maps with the Systems Biology Graphical Notation. Nat Protoc 7(3):579–593. https://doi.org/10.1038/nprot.2012.002

    Article  CAS  PubMed  Google Scholar 

  85. Rosse C, Mejino JL Jr (2003) A reference ontology for biomedical informatics: the Foundational Model of Anatomy. J Biomed Inform 36(6):478–500. https://doi.org/10.1016/j.jbi.2003.11.007

    Article  PubMed  Google Scholar 

  86. Bard JB, Rhee SY (2004) Ontologies in biology: design, applications and future challenges. Nat Rev Genet 5(3):213–222. https://doi.org/10.1038/nrg1295

    Article  CAS  PubMed  Google Scholar 

  87. Wolstencroft K, Owen S, Horridge M, Krebs O, Mueller W, Snoep JL, du Preez F, Goble C (2011) RightField: embedding ontology annotation in spreadsheets. Bioinformatics 27(14):2021–2022. https://doi.org/10.1093/bioinformatics/btr312

    Article  CAS  PubMed  Google Scholar 

  88. Maguire E, Gonzalez-Beltran A, Whetzel PL, Sansone SA, Rocca-Serra P (2013) OntoMaton: a bioportal powered ontology widget for Google Spreadsheets. Bioinformatics 29(4):525–527. https://doi.org/10.1093/bioinformatics/bts718

    Article  CAS  PubMed  Google Scholar 

  89. Wolstencroft K, Owen S, Krebs O, Müller W, Nguyen Q, Snoep JL, Goble C (2013) Semantic data and models sharing in systems biology: the Just Enough Results Model and the SEEK platform. In: Alani H, Kagal L, Fokoue A et al (eds) The semantic web – ISWC 2013. Springer, Berlin. https://doi.org/10.1007/978-3-642-41338-4_14

    Chapter  Google Scholar 

  90. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25(1):25–29. https://doi.org/10.1038/75556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Federhen S (2012) The NCBI taxonomy database. Nucleic Acids Res 40(Database issue):D136–D143. https://doi.org/10.1093/nar/gkr1178

    Article  CAS  PubMed  Google Scholar 

  92. Natale DA, Arighi CN, Blake JA, Bult CJ, Christie KR, Cowart J, D'Eustachio P, Diehl AD, Drabkin HJ, Helfer O, Huang H, Masci AM, Ren J, Roberts NV, Ross K, Ruttenberg A, Shamovsky V, Smith B, Yerramalla MS, Zhang J, AlJanahi A, Celen I, Gan C, Lv M, Schuster-Lezell E, Wu CH (2014) Protein ontology: a controlled structured network of protein entities. Nucleic Acids Res 42(Database issue):D415–D421. https://doi.org/10.1093/nar/gkt1173

    Article  CAS  PubMed  Google Scholar 

  93. Degtyarenko K, de Matos P, Ennis M, Hastings J, Zbinden M, McNaught A, Alcantara R, Darsow M, Guedj M, Ashburner M (2008) ChEBI: a database and ontology for chemical entities of biological interest. Nucleic Acids Res 36(Database issue):D344–D350. https://doi.org/10.1093/nar/gkm791

    Article  CAS  PubMed  Google Scholar 

  94. Iannella R, McKinney J (2014) vCard ointology – for describing people and organizations. W3c. https://www.w3.org/TR/vcard-rdf/. Accessed 3 Apr 2017

  95. Scharm M, Waltemath D, Mendes P, Wolkenhauer O (2016) COMODI: an ontology to characterise differences in versions of computational models in biology. J Biomed Semantics 7(1):46. https://doi.org/10.1186/s13326-016-0080-2

    Article  PubMed  PubMed Central  Google Scholar 

  96. Resat H, Petzold L, Pettigrew MF (2009) Kinetic modeling of biological systems. Methods Mol Biol 541:311–335. https://doi.org/10.1007/978-1-59745-243-4_14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28:245–248

    Article  CAS  Google Scholar 

  98. Stanford NJ, Millard P, Swainston N (2015) RobOKoD: microbial strain design for (over)production of target compounds. Front Cell Dev Biol 3:17. https://doi.org/10.3389/fcell.2015.00017

    Article  PubMed  PubMed Central  Google Scholar 

  99. Tepper N, Shlomi T (2010) Predicting metabolic engineering knockout strategies for chemical production: accounting for competing pathways. Bioinformatics 26(4):536–543. https://doi.org/10.1093/bioinformatics/btp704

    Article  CAS  PubMed  Google Scholar 

  100. Burgard AP, Pharkya P, Maranas CD (2003) Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84(6):647–657. https://doi.org/10.1002/bit.10803

    Article  CAS  PubMed  Google Scholar 

  101. Garny A, Hunter PJ (2015) OpenCOR: a modular and interoperable approach to computational biology. Front Physiol 6:26. https://doi.org/10.3389/fphys.2015.00026

    Article  PubMed  PubMed Central  Google Scholar 

  102. Walker MA, Madduri R, Rodriguez A, Greenstein JL, Winslow RL (2016) Models and simulations as a service: exploring the use of galaxy for delivering computational models. Biophys J 110(5):1038–1043. https://doi.org/10.1016/j.bpj.2015.12.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Peters M, Eicher JJ, van Niekerk DD, Waltemath D, Snoep JL (2017) The JWS online simulation database. Bioinformatics 33(10):1589–1590. https://doi.org/10.1093/bioinformatics/btw831

    Article  CAS  PubMed  Google Scholar 

  104. Wolstencroft K, Krebs O, Snoep JL, Stanford NJ, Bacall F, Golebiewski M, Kuzyakiv R, Nguyen Q, Owen S, Soiland-Reyes S, Straszewski J, van Niekerk DD, Williams AR, Malmstrom L, Rinn B, Muller W, Goble C (2017) FAIRDOMHub: a repository and collaboration environment for sharing systems biology research. Nucleic Acids Res 45(D1):D404–D407. https://doi.org/10.1093/nar/gkw1032

    Article  CAS  PubMed  Google Scholar 

  105. Heirendt L, Arreckx S, Pfau T, Mendoza SN, Richelle A, Heinken A, Haraldsdottir HS, Keating SM, Vlasov V, Wachowiak J, Magnusdottir S, Yu Ng C, Preciat G, Zagare A, Chan SHJ, Aurich MK, Clancy CM, Modamio J, Sauls JT, Noronha A, Bordbar A, Cousins B, El Assal DC, Ghaderi S, Ahookhosh M, Guebila MB, Apaolaza I, Kostromins A, Le Ding Ma HM, Sun Y, Valcarcel LV, Wang L, Yurkovich JT, Vuong PT, El Assal LP, Hinton S, Bryant WA, Aragon Artacho FJ, Planes FJ, Stalidzans E, Maass A, Vempala S, Hucka M, Saunders MA, Maranas CD, Lewis NE, Sauter T, Palsson BØ, Thiele I, Fleming RMT (2019) Creation and analysis of biochemical constraint-based models: the COBRA Toolbox v3.0. Nat Protoc 14:639–702

    Article  CAS  Google Scholar 

  106. Boele J, Olivier BG, Teusink B (2012) FAME, the flux analysis and modeling environment. BMC Syst Biol 6:8. https://doi.org/10.1186/1752-0509-6-8

    Article  PubMed  PubMed Central  Google Scholar 

  107. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    Article  CAS  Google Scholar 

  108. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42(Database issue):D199–D205. https://doi.org/10.1093/nar/gkt1076

    Article  CAS  PubMed  Google Scholar 

  109. Olivier BG, Rohwer JM, Hofmeyr JH (2005) Modelling cellular systems with PySCeS. Bioinformatics 21(4):560–561. https://doi.org/10.1093/bioinformatics/bti046

    Article  CAS  PubMed  Google Scholar 

  110. Waltemath D, Henkel R, Halke R, Scharm M, Wolkenhauer O (2013) Improving the reuse of computational models through version control. Bioinformatics 29(6):742–748. https://doi.org/10.1093/bioinformatics/btt018

    Article  CAS  PubMed  Google Scholar 

  111. Wolstencroft K, Owen S, du Preez F, Krebs O, Mueller W, Goble C, Snoep JL (2011) The SEEK: a platform for sharing data and models in systems biology. Methods Enzymol 500:629–655. https://doi.org/10.1016/B978-0-12-385118-5.00029-3

    Article  CAS  PubMed  Google Scholar 

  112. Henkel R, Wolkenhauer O, Waltemath D (2015) Combining computational models, semantic annotations and simulation experiments in a graph database. Database (Oxford). https://doi.org/10.1093/database/bau130

  113. Chelliah V, Juty N, Ajmera I, Ali R, Dumousseau M, Glont M, Hucka M, Jalowicki G, Keating S, Knight-Schrijver V, Lloret-Villas A, Natarajan KN, Pettit JB, Rodriguez N, Schubert M, Wimalaratne SM, Zhao Y, Hermjakob H, Le Novere N, Laibe C (2015) BioModels: ten-year anniversary. Nucleic Acids Res 43(Database issue):D542–D548. https://doi.org/10.1093/nar/gku1181

    Article  CAS  PubMed  Google Scholar 

  114. van Gend C, Conradie R, du Preez FB, Snoep JL (2007) Data and model integration using JWS Online. In Silico Biol 7(2 Suppl):S27–S35

    PubMed  Google Scholar 

  115. Buchel F, Rodriguez N, Swainston N, Wrzodek C, Czauderna T, Keller R, Mittag F, Schubert M, Glont M, Golebiewski M, van Iersel M, Keating S, Rall M, Wybrow M, Hermjakob H, Hucka M, Kell DB, Muller W, Mendes P, Zell A, Chaouiya C, Saez-Rodriguez J, Schreiber F, Laibe C, Drager A, Le Novere N (2013) Path2Models: large-scale generation of computational models from biochemical pathway maps. BMC Syst Biol 7:116. https://doi.org/10.1186/1752-0509-7-116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Fabregat A, Sidiropoulos K, Garapati P, Gillespie M, Hausmann K, Haw R, Jassal B, Jupe S, Korninger F, McKay S, Matthews L, May B, Milacic M, Rothfels K, Shamovsky V, Webber M, Weiser J, Williams M, Wu G, Stein L, Hermjakob H, D'Eustachio P (2016) The reactome pathway knowledgebase. Nucleic Acids Res 44(D1):D481–D487. https://doi.org/10.1093/nar/gkv1351

    Article  CAS  PubMed  Google Scholar 

  117. Licata L, Orchard S (2016) The MIntAct project and molecular interaction databases. Methods Mol Biol 1415:55–69. https://doi.org/10.1007/978-1-4939-3572-7_3

    Article  CAS  PubMed  Google Scholar 

  118. Orchard S, Ammari M, Aranda B, Breuza L, Briganti L, Broackes-Carter F, Campbell NH, Chavali G, Chen C, del-Toro N, Duesbury M, Dumousseau M, Galeota E, Hinz U, Iannuccelli M, Jagannathan S, Jimenez R, Khadake J, Lagreid A, Licata L, Lovering RC, Meldal B, Melidoni AN, Milagros M, Peluso D, Perfetto L, Porras P, Raghunath A, Ricard-Blum S, Roechert B, Stutz A, Tognolli M, van Roey K, Cesareni G, Hermjakob H (2014) The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res 42((Database issue)):D358–D363. https://doi.org/10.1093/nar/gkt1115

    Article  CAS  PubMed  Google Scholar 

  119. Hastings J, de Matos P, Dekker A, Ennis M, Harsha B, Kale N, Muthukrishnan V, Owen G, Turner S, Williams M, Steinbeck C (2013) The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013. Nucleic Acids Res 41(Database issue):D456–D463. https://doi.org/10.1093/nar/gks1146

    Article  CAS  PubMed  Google Scholar 

  120. Abeyruwan S, Vempati UD, Kucuk-McGinty H, Visser U, Koleti A, Mir A, Sakurai K, Chung C, Bittker JA, Clemons PA, Brudz S, Siripala A, Morales AJ, Romacker M, Twomey D, Bureeva S, Lemmon V, Schurer SC (2014) Evolving BioAssay Ontology (BAO): modularization, integration and applications. J Biomed Semantics 5(Suppl 1):S5. https://doi.org/10.1186/2041-1480-5-S1-S5

    Article  PubMed  PubMed Central  Google Scholar 

  121. Sansone SA, Rocca-Serra P, Brandizi M, Brazma A, Field D, Fostel J, Garrow AG, Gilbert J, Goodsaid F, Hardy N, Jones P, Lister A, Miller M, Morrison N, Rayner T, Sklyar N, Taylor C, Tong W, Warner G, Wiemann S, Members of the RWG (2008) The first RSBI (ISA-TAB) workshop: “can a simple format work for complex studies?”. OMICS 12(2):143–149. https://doi.org/10.1089/omi.2008.0019

    Article  CAS  PubMed  Google Scholar 

  122. Sansone SA, Rocca-Serra P, Field D, Maguire E, Taylor C, Hofmann O, Fang H, Neumann S, Tong W, Amaral-Zettler L, Begley K, Booth T, Bougueleret L, Burns G, Chapman B, Clark T, Coleman LA, Copeland J, Das S, de Daruvar A, de Matos P, Dix I, Edmunds S, Evelo CT, Forster MJ, Gaudet P, Gilbert J, Goble C, Griffin JL, Jacob D, Kleinjans J, Harland L, Haug K, Hermjakob H, Ho Sui SJ, Laederach A, Liang S, Marshall S, McGrath A, Merrill E, Reilly D, Roux M, Shamu CE, Shang CA, Steinbeck C, Trefethen A, Williams-Jones B, Wolstencroft K, Xenarios I, Hide W (2012) Toward interoperable bioscience data. Nat Genet 44(2):121–126. https://doi.org/10.1038/ng.1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM (2004) ModelDB: a database to support computational neuroscience. J Comput Neurosci 17(1):7–11. https://doi.org/10.1023/B:JCNS.0000023869.22017.2e

    Article  PubMed  PubMed Central  Google Scholar 

  124. McDougal RA, Morse TM, Carnevale T, Marenco L, Wang R, Migliore M, Miller PL, Shepherd GM, Hines ML (2017) Twenty years of ModelDB and beyond: building essential modeling tools for the future of neuroscience. J Comput Neurosci 42(1):1–10. https://doi.org/10.1007/s10827-016-0623-7

    Article  PubMed  Google Scholar 

  125. McDougal RA, Morse TM, Hines ML, Shepherd GM (2015) ModelView for ModelDB: online presentation of model structure. Neuroinformatics 13(4):459–470. https://doi.org/10.1007/s12021-015-9269-2

    Article  PubMed  PubMed Central  Google Scholar 

  126. Placzek S, Schomburg I, Chang A, Jeske L, Ulbrich M, Tillack J, Schomburg D (2017) BRENDA in 2017: new perspectives and new tools in BRENDA. Nucleic Acids Res 45(D1):D380–D388. https://doi.org/10.1093/nar/gkw952

    Article  CAS  PubMed  Google Scholar 

  127. Wittig U, Kania R, Golebiewski M, Rey M, Shi L, Jong L, Algaa E, Weidemann A, Sauer-Danzwith H, Mir S, Krebs O, Bittkowski M, Wetsch E, Rojas I, Muller W (2012) SABIO-RK—database for biochemical reaction kinetics. Nucleic Acids Res 40(Database issue):D790–D796. https://doi.org/10.1093/nar/gkr1046

    Article  CAS  PubMed  Google Scholar 

  128. Bergmann FT, Adams R, Moodie S, Cooper J, Glont M, Golebiewski M, Hucka M, Laibe C, Miller AK, Nickerson DP, Olivier BG, Rodriguez N, Sauro HM, Scharm M, Soiland-Reyes S, Waltemath D, Yvon F, Le Novere N (2014) COMBINE archive and OMEX format: one file to share all information to reproduce a modeling project. BMC Bioinformatics 15:369. https://doi.org/10.1186/s12859-014-0369-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bechhofer S, Buchan I, De Roure D, Missier P, Ainsworth J, Bhagat J, Couch P, Cruickshank D, Delderfield M, Dunlop I, Gamble M, Michaelides D, Owen S, Newman D, Sufi S, Goble C (2013) Why linked data is not enough for scientists. Futur Gener Comput Syst 29(2):599–611. https://doi.org/10.1016/j.future.2011.08.004

    Article  Google Scholar 

  130. Scharm M, Wendland F, Peters M, Wolfien M, Thiele T, Waltemath D (2014) The CombineArchiveWeb application – a web based tool to handle files associated with modelling results. CEUR workshop proceedings

    Google Scholar 

  131. Bergmann FT, Nickerson D, Waltemath D, Scharm M (2017) SED-ML web tools: generate, modify and export standard-compliant simulation studies. Bioinformatics 33(8):1253–1254. https://doi.org/10.1093/bioinformatics/btw812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Pattinson D (2012) Launches Reproducibility initiative EveryOne PLoS One. PLOS one community blog

    Google Scholar 

  133. Scharm M, Waltemath D (2015) Extracting reproducible simulation studies from model repositories using the CombineArchive Toolkit. Proceedings of the workshop on data management in life sciences

    Google Scholar 

  134. Cooper J, Scharm M, Mirams GR (2016) The cardiac electrophysiology Web lab. Biophys J 110(2):292–300. https://doi.org/10.1016/j.bpj.2015.12.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Cooper J, Vik JO, Waltemath D (2015) A call for virtual experiments: accelerating the scientific process. Prog Biophys Mol Biol 117(1):99–106. https://doi.org/10.1016/j.pbiomolbio.2014.10.001

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Pahle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Stanford, N.J. et al. (2019). Data Management in Computational Systems Biology: Exploring Standards, Tools, Databases, and Packaging Best Practices. In: Oliver, S.G., Castrillo, J.I. (eds) Yeast Systems Biology. Methods in Molecular Biology, vol 2049. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9736-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9736-7_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9735-0

  • Online ISBN: 978-1-4939-9736-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics