Skip to main content

Probing the RNA-Binding Proteome from Yeast to Man: Major Advances and Challenges

  • Protocol
  • First Online:
Yeast Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2049))

  • 1380 Accesses

Abstract

RNA-binding proteins are important for core cellular processes such as mRNA transcription, splicing, transport, translation, and degradation. Recently, hundreds of novel RNA-binders have been identified in vivo in various organisms and cell types. We discuss the RNA interactome capture technique which enabled this boost in identifying new RNA-binding proteins in eukaryotes. A focus of this chapter, however, is the presentation of different challenges and problems that need to be addressed to be able to understand the conserved mRNA-bound proteomes from yeast to man.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gerstberger S, Hafner M, Tuschl T (2014) A consensus of human RNA-binding proteins. Nat Rev Genet 15:829–845

    Article  CAS  PubMed  Google Scholar 

  2. Mitchell SF, Parker R (2014) Principles and properties of eukaryotic mRNPs. Mol Cell 54:547–558

    Article  CAS  PubMed  Google Scholar 

  3. Hogan DJ, Riordan DP, Gerber AP, Herschlag D, Brown PO (2008) Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system. PLoS Biol 6:e255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Gehring NH, Wahle E, Fischer U (2017) Deciphering the mRNP code: RNA-bound determinants of post-transcriptional gene regulation. Trends Biochem Sci 42:369–382

    Article  CAS  PubMed  Google Scholar 

  5. Cooper TA, Wan L, Dreyfuss G (2009) RNA and disease. Cell 136:777–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Darnell RB (2010) RNA regulation in neurologic disease and cancer. Cancer Res Treat 42:125–129

    Article  PubMed  PubMed Central  Google Scholar 

  7. Neelamraju Y, Hashemikhabir S, Janga SC (2015) The human RBPome: from genes and proteins to human disease. J Proteomics 127(Pt A):61–70

    Article  CAS  PubMed  Google Scholar 

  8. Morris AR, Mukherjee N, Keene JD (2010) Systematic analysis of posttranscriptional gene expression. Wiley Interdiscip Rev Syst Biol Med 2:162–180

    Article  CAS  PubMed  Google Scholar 

  9. Ascano M, Hafner M, Cekan P, Gerstberger S, Tuschl T (2012) Identification of RNA-protein interaction networks using PAR-CLIP. Wiley Interdiscip Rev RNA 3:159–177

    Article  CAS  PubMed  Google Scholar 

  10. Huppertz I, Attig J, D'Ambrogio A et al (2014) iCLIP: protein-RNA interactions at nucleotide resolution. Methods 65:274–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ule J, Jensen KB, Ruggiu M, Mele A, Ule A, Darnell RB (2003) CLIP identifies Nova-regulated RNA networks in the brain. Science 302:1212–1215

    Article  CAS  PubMed  Google Scholar 

  12. Granneman S, Kudla G, Petfalski E, Tollervey D (2009) Identification of protein binding sites on U3 snoRNA and pre-rRNA by UV cross-linking and high-throughput analysis of cDNAs. Proc Natl Acad Sci U S A 106:9613–9618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Van Nostrand EL, Pratt GA, Shishkin AA (2016) Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat Methods 13:508–514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zhang C, Darnell RB (2011) Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data. Nat Biotechnol 29:607–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Anantharaman V, Koonin EV, Aravind L (2002) Comparative genomics and evolution of proteins involved in RNA metabolism. Nucleic Acids Res 30:1427–1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Scherrer T, Mittal N, Janga SC, Gerber AP (2010) A screen for RNA-binding proteins in yeast indicates dual functions for many enzymes. PLoS One 5:e15499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tsvetanova NG, Klass DM, Salzman J, Brown PO (2010) Proteome-wide search reveals unexpected RNA-binding proteins in Saccharomyces cerevisiae. PLoS One 5:e12671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Castello A, Fischer B, Eichelbaum K et al (2012) Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149:1393–1406

    Article  CAS  PubMed  Google Scholar 

  19. Baltz AG, Munschauer M, Schwanhäusser B et al (2012) The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol Cell 46:674–690

    Article  CAS  PubMed  Google Scholar 

  20. Mitchell SF, Jain S, She M, Parker R (2013) Global analysis of yeast mRNPs. Nat Struct Mol Biol 20:127–133

    Article  CAS  PubMed  Google Scholar 

  21. Beckmann BM, Horos R, Fischer B et al (2015) The RNA-binding proteomes from yeast to man harbour conserved enigmRBPs. Nat Commun 6:10127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Matia-González AM, Laing EE, Gerber AP (2015) Conserved mRNA-binding proteomes in eukaryotic organisms. Nat Struct Mol Biol 22:1027–1033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Castello A, Horos R, Strein C et al (2013) System-wide identification of RNA-binding proteins by interactome capture. Nat Protoc 83:491–500

    Article  CAS  Google Scholar 

  24. Beckmann BM (2017) RNA interactome capture in yeast. Methods 118–119:82–92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Kastelic N, Landthaler M (2017) mRNA interactome capture in mammalian cells. Methods 126:38–43

    Article  CAS  PubMed  Google Scholar 

  26. Hafner M, Landthaler M, Burger L et al (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141:129–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Beckmann BM, Castello A, Medenbach J (2016) The expanding universe of ribonucleoproteins: of novel RNA-binding proteins and unconventional interactions. Pflugers Arch 468:1029–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hockensmith JW, Kubasek WL, Vorachek WR, von Hippel PH (1986) Laser cross-linking of nucleic acids to proteins. Methodology and first applications to the phage T4 DNA replication system. J Biol Chem 261:3512–3518

    Article  CAS  PubMed  Google Scholar 

  29. Favre A, Moreno G, Blondel MO, Kliber J, Vinzens F, Salet C (1986) 4-Thiouridine photosensitized RNA-protein cross-linking in mammalian cells. Biochem Biophys Res Commun 141:847–854

    Article  CAS  PubMed  Google Scholar 

  30. Brimacombe R, Stiege W, Kyriatsoulis A, Maly P (1988) Intra-RNA and RNA-protein cross-linking techniques in Escherichia coli ribosomes. Methods Enzymol 164:287–309

    Article  CAS  PubMed  Google Scholar 

  31. Favre A (1990) 4-Thiouridine as an intrinsic photoaffinity probe of nucleic acid structure and interactions. In: Morrison H (ed) Bioorganic photochemistry. Wiley, New York, pp 379–425

    Google Scholar 

  32. Liao Y, Castello A, Fischer B (2016) The cardiomyocyte RNA-binding proteome: links to intermediary metabolism and heart disease. Cell Rep 16:1456–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kwon SC, Yi H, Eichelbaum K (2013) The RNA-binding protein repertoire of embryonic stem cells. Nat Struct Mol Biol 20:1122–1130

    Article  CAS  PubMed  Google Scholar 

  34. He C, Sidoli S, Warneford-Thomson R et al (2016) High-resolution mapping of RNA-binding regions in the nuclear proteome of embryonic stem cells. Mol Cell 64:416–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liepelt A, Naarmann-de Vries IS, Simons N et al (2016) Identification of RNA-binding proteins in macrophages by interactome capture. Mol Cell Proteomics 15:2699–2714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Conrad T, Albrecht AS, de Melo Costa VR et al (2016) Serial interactome capture of the human cell nucleus. Nat Commun 7:11212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Despic V, Dejung M, Gu M et al (2017) Dynamic RNA-protein interactions underlie the zebrafish maternal-to-zygotic transition. Genome Res 27:1184–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wessels HH, Imami K, Baltz AG (2016) The mRNA-bound proteome of the early fly embryo. Genome Res 26:1000–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sysoev VO, Fischer B, Frese CK (2016) Global changes of the RNA-bound proteome during the maternal-to-zygotic transition in Drosophila. Nat Commun 7:12128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bunnik EM, Batugedara G, Saraf A, Prudhomme J, Florens L, Le Roch KG (2016) The mRNA-bound proteome of the human malaria parasite Plasmodium falciparum. Genome Biol 17:147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Marondedze C, Thomas L, Serrano NL, Lilley KS, Gehring C (2016) The RNA-binding protein repertoire of Arabidopsis thaliana. Sci Rep 6:29766

    Article  PubMed  PubMed Central  Google Scholar 

  42. Reichel M, Liao Y, Rettel M (2016) In planta determination of the mRNA-binding proteome of Arabidopsis etiolated seedlings. Plant Cell 28:2435–2452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chang CH, Curtis JD, Maggi LB Jr et al (2013) Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153:1239–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hentze MW, Preiss T (2010) The REM phase of gene regulation. Trends Biochem Sci 35:423–426

    Article  CAS  PubMed  Google Scholar 

  45. Kramer K, Sachsenberg T, Beckmann BM (2014) Photo-cross-linking and high-resolution mass spectrometry for assignment of RNA-binding sites in RNA-binding proteins. Nat Methods 11:1064–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Castello A, Fischer B, Frese CK et al (2016) Comprehensive identification of RNA-binding domains in human cells. Mol Cell 634:696–710

    Article  CAS  Google Scholar 

  47. Mullari M, Lyon D, Jensen LJ, Nielsen ML (2017) Specifying RNA-binding regions in proteins by peptide cross-linking and affinity purification. J Proteome Res 16:2762–2772

    Article  CAS  PubMed  Google Scholar 

  48. Herrero J, Muffato M, Beal K (2016) Ensembl comparative genomics resources. Database (Oxford) 2016:baw053

    Article  Google Scholar 

  49. Ostlund G, Schmitt T, Forslund K (2010) InParanoid 7: new algorithms and tools for eukaryotic orthology analysis. Nucleic Acids Res 38(Database issue):D196–D203

    Article  PubMed  CAS  Google Scholar 

  50. Macaulay IC, Svensson V, Labalette C (2016) Single-cell RNA-sequencing reveals a continuous spectrum of differentiation in hematopoietic cells. Cell Rep 14:966–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yoon JH, Gorospe M (2016) Identification of mRNA-interacting factors by MS2-TRAP (MS2-tagged RNA affinity purification). Methods Mol Biol 1421:15–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hogg JR, Collins K (2007) RNA-based affinity purification reveals 7SK RNPs with distinct composition and regulation. RNA 13:868–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hartmuth K, Vornlocher HP, Lührmann R (2004) Tobramycin affinity tag purification of spliceosomes. Methods Mol Biol 257:47–64

    CAS  PubMed  Google Scholar 

  54. Blencowe BJ, Sproat BS, Ryder U, Barabino S, Lamond AI (1989) Antisense probing of the human U4/U6 snRNP with biotinylated 2′-OMe RNA oligonucleotides. Cell 59:531–539

    Article  CAS  PubMed  Google Scholar 

  55. Lingner J, Cech TR (1996) Purification of telomerase from Euplotes aediculatus: requirement of a primer 3′ overhang. Proc Natl Acad Sci U S A 93:10712–10717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rogell B, Fischer B, Rettel M (2017) Specific RNP capture with antisense LNA/DNA mixmers. RNA 23:1290–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Matia-González AM, Iadevaia V, Gerber AP (2017) A versatile tandem RNA isolation procedure to capture in vivo formed mRNA-protein complexes. Methods 118–119:93–100

    Article  PubMed  CAS  Google Scholar 

  58. Milo R, Phillips R (2015) Cell biology by the numbers, 1st edn. Garland Science, New York

    Book  Google Scholar 

  59. Raj A, van den Bogaard P, Rifkin S, van Oudenaarden A, Tyagi S (2008) Imaging individual mRNA molecules using multiple singly labeled probes. Nat Methods 5:877–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chu C, Zhang QC, da Rocha ST et al (2015) Systematic discovery of Xist RNA binding proteins. Cell 1612:404–416

    Article  CAS  Google Scholar 

  61. Baltimore D (1970) RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature 226:1209–1211

    Article  CAS  PubMed  Google Scholar 

  62. Temin HM, Mizutani S (1970) RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature 226:1211–1213

    Article  CAS  PubMed  Google Scholar 

  63. Saiki RK, Gelfand DH, Stoffel S (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    Article  CAS  PubMed  Google Scholar 

  64. Van Dijk EL, Jaszczyszyn Y, Thermes C (2014) Library preparation methods for next-generation sequencing: tone down the bias. Exp Cell Res 322:12–20

    Article  PubMed  CAS  Google Scholar 

  65. Marzluff WF (2005) Metazoan replication-dependent histone mRNAs: a distinct set of RNA polymerase II transcripts. Curr Opin Cell Biol 17:274–280

    Article  CAS  PubMed  Google Scholar 

  66. Yamashita A, Shichino Y, Yamamoto M (2015) The long non-coding RNA world in yeasts. Biochim Biophys Acta 1859(1):147–154

    Article  PubMed  CAS  Google Scholar 

  67. Tudek A, Candelli T, Libri D (2015) Non-coding transcription by RNA polymerase II in yeast: Hasard or nécessité? Biochimie 117:28–36

    Article  CAS  PubMed  Google Scholar 

  68. Beggs S, James TC, Bond U (2012) The PolyA tail length of yeast histone mRNAs varies during the cell cycle and is influenced by Sen1p and Rrp6p. Nucleic Acids Res 40:2700–2711

    Article  CAS  PubMed  Google Scholar 

  69. Schmid M, Olszewski P, Pelechano V, Gupta I, Steinmetz LM, Jensen TH (2015) The nuclear polyA-binding protein Nab2p is essential for mRNA production. Cell Rep 12:128–139

    Article  CAS  PubMed  Google Scholar 

  70. Kadowaki T, Schneiter R, Hitomi M, Tartakoff AM (1995) Mutations in nucleolar proteins lead to nucleolar accumulation of polyA+ RNA in Saccharomyces cerevisiae. Mol Biol Cell 6:1103–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kuai L, Fang F, Butler JS, Sherman F (2004) Polyadenylation of rRNA in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 101:8581–8586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Battaglia S, Lidschreiber M, Baejen C, Torkler P, Vos SM, Cramer P (2017) RNA-dependent chromatin association of transcription elongation factors and Pol II CTD kinases. elife 24:e25637

    Article  Google Scholar 

  73. Sayou C, Millán-Zambrano G, Santos-Rosa H (2017) RNA binding by histone methyltransferases Set1 and Set2. Mol Cell Biol 37:e00165–e00117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Herzel L, Ottoz DSM, Alpert T, Neugebauer KM (2017) Splicing and transcription touch base: co-transcriptional spliceosome assembly and function. Nat Rev Mol Cell Biol 18:637–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Barrass JD, Reid JE, Huang Y (2015) Transcriptome-wide RNA processing kinetics revealed using extremely short 4tU labeling. Genome Biol 16:282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Van Nues R, Schweikert G, de Leau E (2017) Kinetic CRAC uncovers a role for Nab3 in determining gene expression profiles during stress. Nat Commun 8:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Hennig J, Sattler M (2015) Deciphering the protein-RNA recognition code: combining large-scale quantitative methods with structural biology. BioEssays 37:899–908

    Article  CAS  PubMed  Google Scholar 

  78. Le Hir H, Saulière J, Wang Z (2016) The exon junction complex as a node of post-transcriptional networks. Nat Rev Mol Cell Biol 17:41–54

    Article  PubMed  CAS  Google Scholar 

  79. Gong C, Maquat LE (2015) Affinity purification of long noncoding RNA-protein complexes from formaldehyde cross-linked mammalian cells. Methods Mol Biol 1206:81–86

    Article  CAS  PubMed  Google Scholar 

  80. Yeh HS, Chang JW, Yong J (2016) Ribo-proteomics approach to profile RNA-protein and protein-protein interaction networks. Methods Mol Biol 1421:165–174

    Article  CAS  PubMed  Google Scholar 

  81. Heym RG, Niessing D (2012) Principles of mRNA transport in yeast. Cell Mol Life Sci 69:1843–1853

    Article  CAS  PubMed  Google Scholar 

  82. Niedner A, Edelmann FT, Niessing D (2014) Of social molecules: the interactive assembly of ASH1 mRNA-transport complexes in yeast. RNA Biol 11:998–1009

    Article  PubMed  PubMed Central  Google Scholar 

  83. Singer-Krüger B, Jansen RP (2014) Here, there, everywhere. mRNA localization in budding yeast. RNA Biol 11:1031–1039

    Article  PubMed  PubMed Central  Google Scholar 

  84. Hyman AA, Weber CA, Jülicher F (2014) Liquid-liquid phase separation in biology. Annu Rev Cell Dev Biol 30:39–58

    Article  CAS  PubMed  Google Scholar 

  85. Buchan JR (2014) mRNP granules. Assembly, function, and connections with disease. RNA Biol 118:1019–1030

    Article  Google Scholar 

  86. Lin Y, Protter DS, Rosen MK, Parker R (2015) Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol Cell 60:208–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Calabretta S, Richard S (2015) Emerging roles of disordered sequences in RNA-binding proteins. Trends Biochem Sci 40:662–672

    Article  CAS  PubMed  Google Scholar 

  88. Hubstenberger A, Courel M, Bénard M (2017) P-body purification reveals the condensation of repressed mRNA regulons. Mol Cell 68:144–157

    Article  CAS  PubMed  Google Scholar 

  89. Riback JA, Katanski CD, Kear-Scott JL (2017) Stress-triggered phase separation is an adaptive, evolutionarily tuned response. Cell 168:1028–1040.e19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lee JH, Daugharthy ER, Scheiman J (2014) Highly multiplexed subcellular RNA sequencing in situ. Science 343:1360–1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Byrne A, Beaudin AE, Olsen HE (2017) Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of individual B cells. Nat Commun 8:16027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Huang G, Willems K, Soskine M, Wloka C, Maglia G (2017) Electro-osmotic capture and ionic discrimination of peptide and protein biomarkers with FraC nanopores. Nat Commun 8:935

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Nissen P, Hansen J, Ban N, Moore PB, Steitz TA (2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289:920–930

    Article  CAS  PubMed  Google Scholar 

  94. Fica SM, Tuttle N, Novak T et al (2013) RNA catalyses nuclear pre-mRNA splicing. Nature 503:229–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35(Pt 2):849–857

    Article  CAS  PubMed  Google Scholar 

  96. Crick F (1970) Central dogma of molecular biology. Nature 227:561–563

    Article  CAS  Google Scholar 

  97. Wang P, Xu J, Wang Y, Cao X (2017) An interferon-independent lncRNA promotes viral replication by modulating cellular metabolism. Science 2017:eaao0409

    Google Scholar 

Download references

Acknowledgments

B.M.B. wishes to thank Matthias Hentze for discussions and comments on the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedikt M. Beckmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Beckmann, B.M., Granneman, S. (2019). Probing the RNA-Binding Proteome from Yeast to Man: Major Advances and Challenges. In: Oliver, S.G., Castrillo, J.I. (eds) Yeast Systems Biology. Methods in Molecular Biology, vol 2049. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9736-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9736-7_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9735-0

  • Online ISBN: 978-1-4939-9736-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics