Skip to main content

Data-Independent Acquisition for Yeast Glycoproteomics

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2049))

Abstract

Glycosylation is a complex posttranslational modification that is critical for regulating the functions of diverse proteins. Analysis of protein glycosylation is made challenging by the high degree of heterogeneity in both glycan occupancy and structure. Here, we describe methods for data-independent acquisition (SWATH) mass spectrometry analysis of structure and occupancy of N-glycans from yeast cell wall glycoproteins.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Aebersold R, Mann M (2016) Mass-spectrometric exploration of proteome structure and function. Nature 537(7620):347–355

    Article  CAS  Google Scholar 

  2. Giansanti P et al (2016) Six alternative proteases for mass spectrometry-based proteomics beyond trypsin. Nat Protoc 11(5):993–1006

    Article  CAS  Google Scholar 

  3. Varki A et al (2017) Essentials of glycobiology, 3rd edn. Cold Spring Harbor, NY

    Google Scholar 

  4. Rudd P et al (2015) Glycomics and glycoproteomics. In: Varki A et al (eds) Essentials of glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. Copyright 2015 by the consortium of Glycobiology editors, La Jolla, CA. All rights reserved

    Google Scholar 

  5. Schwarz F, Aebi M (2011) Mechanisms and principles of N-linked protein glycosylation. Curr Opin Struct Biol 21(5):576–582

    Article  CAS  Google Scholar 

  6. Kowarik M et al (2006) N-linked glycosylation of folded proteins by the bacterial oligosaccharyltransferase. Science 314(5802):1148–1150

    Article  CAS  Google Scholar 

  7. Medus ML et al (2017) N-glycosylation triggers a dual selection pressure in eukaryotic secretory proteins. Sci Rep 7(1):8788

    Article  Google Scholar 

  8. Zacchi LF, Schulz BL (2016) N-glycoprotein macroheterogeneity: biological implications and proteomic characterization. Glycoconj J 33(3):359–376

    Article  CAS  Google Scholar 

  9. Caramelo JJ, Parodi AJ (2015) A sweet code for glycoprotein folding. FEBS Lett 589(22):3379–3387

    Article  CAS  Google Scholar 

  10. Tate MD et al (2014) Playing hide and seek: how glycosylation of the influenza virus hemagglutinin can modulate the immune response to infection. Viruses 6(3):1294–1316

    Article  Google Scholar 

  11. Freeze HH et al (2014) Solving glycosylation disorders: fundamental approaches reveal complicated pathways. Am J Hum Genet 94(2):161–175

    Article  CAS  Google Scholar 

  12. Thaysen-Andersen M, Packer NH, Schulz BL (2016) Maturing glycoproteomics technologies provide unique structural insights into the N-glycoproteome and its regulation in health and disease. Mol Cell Proteomics 15(6):1773–1790

    Article  CAS  Google Scholar 

  13. Zacchi LF, Schulz BL (2016) SWATH-MS glycoproteomics reveals consequences of defects in the glycosylation machinery. Mol Cell Proteomics 15(7):2435–2447

    Article  CAS  Google Scholar 

  14. Wilson NL et al (2002) Sequential analysis of N- and O-linked glycosylation of 2D-PAGE separated glycoproteins. J Proteome Res 1(6):521–529

    Article  CAS  Google Scholar 

  15. Schulz BL et al (2009) Oxidoreductase activity of oligosaccharyltransferase subunits Ost3p and Ost6p defines site-specific glycosylation efficiency. Proc Natl Acad Sci U S A 106(27):11061–11066

    Article  CAS  Google Scholar 

  16. Bailey UM, Jamaluddin MF, Schulz BL (2012) Analysis of congenital disorder of glycosylation-id in a yeast model system shows diverse site-specific under-glycosylation of glycoproteins. J Proteome Res 11(11):5376–5383

    Article  CAS  Google Scholar 

  17. Gillet LC et al (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11(6):O111.016717

    Article  Google Scholar 

  18. Treco DA, Lundblad V (2000) Basic techniques of yeast genetics, Current protocols in molecular biology. John Wiley and Sons, Piscataway NJ, pp 13.1.1–13.1.7

    Google Scholar 

  19. Tran JR, Brodsky JL (2012) Assays to measure ER-associated degradation in yeast. Methods Mol Biol 832:505–518

    Article  CAS  Google Scholar 

  20. Loo RR, Dales N, Andrews PC (1996) The effect of detergents on proteins analyzed by electrospray ionization. Methods Mol Biol 61:141–160

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding: This work was supported by Australian Research Council Discovery Project grant DP160102766 and Australian Research Council Industrial Transformation and Training Centre Grant IC160100027 to BLS. BLS holds an Australian National Health and Medical Research Council RD Wright Biomedical Fellowship APP1087975.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin L. Schulz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zacchi, L.F., Schulz, B.L. (2019). Data-Independent Acquisition for Yeast Glycoproteomics. In: Oliver, S.G., Castrillo, J.I. (eds) Yeast Systems Biology. Methods in Molecular Biology, vol 2049. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9736-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9736-7_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9735-0

  • Online ISBN: 978-1-4939-9736-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics