Skip to main content

Simultaneous Detection of Chlamydia trachomatis and Neisseria gonorrhoeae Using Real-Time Multiplex qPCR Assay

  • Protocol
  • First Online:
  • 967 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2042))

Abstract

Real-time polymerase chain reaction (qPCR) has become a prominent technique in life science research particularly for the detection and monitoring of biomarkers, pathogens, and environmental contaminants. Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG) are among the major pathogens responsible for sexually transmitted diseases (STDs). Here, multiplex qPCR was utilized for the amplification and detection Chlamydia trachomatis and Neisseria gonorrhoeae within the same reaction tube.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Newman L, Rowley J, Vander Hoorn S, Wijesooriya NS, Unemo M, Low N, Stevens G, Gottlieb S, Kiarie J, Temmerman M (2015) Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLoS One 10(12):e0143304. https://doi.org/10.1371/journal.pone.0143304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Prevention CfDCa (2014) Sexually Transmitted Disease Surveillance 2013. U.S. Department of Health and Human Services, Atlanta. Centers for Disease Control and Prevention

    Google Scholar 

  3. Baugh LR, Hill AA, Brown EL, Hunter CP (2001) Quantitative analysis of mRNA amplification by in vitro transcription. Nucleic Acids Res 29(5):e29. https://doi.org/10.1093/nar/29.5.e29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Papp JR, Schachter J, Gaydos CA, Van Der Pol B (2014) Recommendations for the laboratory-based detection of Chlamydia trachomatis and Neisseria gonorrhoeae — 2014. MMWR Recomm Rep 63(RR-02):1–19

    PubMed Central  Google Scholar 

  5. Van Dyck E, Ieven M, Pattyn S, Van Damme L, Laga M (2001) Detection of Chlamydia trachomatis and Neisseria gonorrhoeae by enzyme immunoassay, culture, and three nucleic acid amplification tests. J Clin Microbiol 39(5):1751–1756. https://doi.org/10.1128/jcm.39.5.1751-1756.2001

    Article  PubMed  PubMed Central  Google Scholar 

  6. Eboigbodin KE, Hoser MJ (2016) Multiplex strand invasion based amplification (mSIBA) assay for detection of Chlamydia trachomatis and Neisseria gonorrhoeae. Sci Rep 6:20487. https://doi.org/10.1038/srep20487. https://www.nature.com/articles/srep20487#supplementary-information

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kundapur RR, Nema V (2016) Loop-mediated isothermal amplification: beyond microbial identification. Cogent Biology 2(1):1137110. https://doi.org/10.1080/23312025.2015.1137110

    Article  CAS  Google Scholar 

  8. Eboigbodin K, Filén S, Ojalehto T, Brummer M, Elf S, Pousi K, Hoser M (2016) Reverse transcription strand invasion based amplification (RT-SIBA): a method for rapid detection of influenza A and B. Appl Microbiol Biotechnol 100(12):5559–5567. https://doi.org/10.1007/s00253-016-7491-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gaydos CA, Quinn TC, Willis D, Weissfeld A, Hook EW, Martin DH, Ferrero DV, Schachter J (2003) Performance of the APTIMA combo 2 assay for detection of Chlamydia trachomatis and Neisseria gonorrhoeae in female urine and endocervical swab specimens. J Clin Microbiol 41(1):304–309. https://doi.org/10.1128/jcm.41.1.304-309.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Eboigbodin K, Filén S, Ojalehto T, Brummer M, Elf S, Pousi K, Hoser M (2016) Reverse transcription strand invasion based amplification (RT-SIBA): a method for rapid detection of influenza A and B. Appl Microbiol Biotechnol 1–9. https://doi.org/10.1007/s00253-016-7491-y

    Article  CAS  Google Scholar 

  11. Eboigbodin KE, Moilanen K, Elf S, Hoser M (2017) Rapid and sensitive real-time assay for the detection of respiratory syncytial virus using RT-SIBA®. BMC Infectious Diseases 17(1):134. https://doi.org/10.1186/s12879-017-2227-x

    Article  Google Scholar 

  12. Forward KR (2010) Risk of coinfection with Chlamydia trachomatis and Neisseria gonorrhoeae in Nova Scotia. Can J Infect Dis Med Microbiol 21(2):e84–e86

    Article  Google Scholar 

  13. Lim RBT, Wong ML, Cook AR, Brun C, Chan RKW, Sen P, Chio M (2015) Determinants of chlamydia, gonorrhea, and coinfection in heterosexual adolescents attending the national public sexually transmitted infection clinic in Singapore. Sex Transm Dis 42(8):450–456. https://doi.org/10.1097/olq.0000000000000316

    Article  PubMed  Google Scholar 

  14. Navarro E, Serrano-Heras G, Castaño MJ, Solera J (2015) Real-time PCR detection chemistry. Clin Chim Acta 439:231–250. https://doi.org/10.1016/j.cca.2014.10.017

    Article  CAS  PubMed  Google Scholar 

  15. Besson G, Kazanji M (2009) One-step, multiplex, real-time PCR assay with molecular beacon probes for simultaneous detection, differentiation, and quantification of human T-cell leukemia virus types 1, 2, and 3. J Clin Microbiol 47(4):1129–1135. https://doi.org/10.1128/JCM.02006-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cura CI, Duffy T, Lucero RH, Bisio M, Péneau J, Jimenez-Coello M, Calabuig E, Gimenez MJ, Valencia Ayala E, Kjos SA, Santalla J, Mahaney SM, Cayo NM, Nagel C, Barcán L, Málaga Machaca ES, Acosta Viana KY, Brutus L, Ocampo SB, Aznar C, Cuba Cuba CA, Gürtler RE, Ramsey JM, Ribeiro I, VandeBerg JL, Yadon ZE, Osuna A, Schijman AG (2015) Multiplex real-time PCR assay using TaqMan probes for the identification of Trypanosoma cruzi DTUs in biological and clinical samples. PLoS Negl Trop Dis 9(5):e0003765. https://doi.org/10.1371/journal.pntd.0003765

    Article  Google Scholar 

  17. Hopkins MJ, Ashton LJ, Alloba F, Alawattegama A, Hart IJ (2010) Validation of a laboratory-developed real-time PCR protocol for detection of Chlamydia trachomatis and Neisseria gonorrhoeae in urine. Sex Transm Infect 86(3):207–211. https://doi.org/10.1136/sti.2009.040634

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Eboigbodin, K.E. (2019). Simultaneous Detection of Chlamydia trachomatis and Neisseria gonorrhoeae Using Real-Time Multiplex qPCR Assay. In: Brown, A. (eds) Chlamydia trachomatis. Methods in Molecular Biology, vol 2042. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9694-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9694-0_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9693-3

  • Online ISBN: 978-1-4939-9694-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics