Skip to main content

Application of Loop-Mediated Isothermal Amplification Assay for the Detection of Chlamydia trachomatis and Neisseria gonorrhoeae

  • Protocol
  • First Online:
Book cover Chlamydia trachomatis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2042))

Abstract

The loop-mediated isothermal amplification (LAMP) is one of the most widely used isothermal nucleic acid amplification techniques due to it its simplicity and adaptability within limited resource or point-of-care settings. Here, LAMP was utilized for the rapid amplification and detection of Chlamydia trachomatis and Neisseria gonorrhoeae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoser MJ, Mansukoski HK, Morrical SW, Eboigbodin KE (2014) Strand invasion based amplification (SIBA®): a novel isothermal DNA amplification technology demonstrating high specificity and sensitivity for a single molecule of target analyte. PLoS One 9. https://doi.org/10.1371/journal.pone.0112656

    Article  PubMed  PubMed Central  Google Scholar 

  2. Eboigbodin K, Filén S, Ojalehto T, Brummer M, Elf S, Pousi K, Hoser M (2016) Reverse transcription strand invasion based amplification (RT-SIBA): a method for rapid detection of influenza A and B. Appl Microbiol Biotechnol 100(12):5559–5567. https://doi.org/10.1007/s00253-016-7491-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Eboigbodin KE, Moilanen K, Elf S, Hoser M (2017) Rapid and sensitive real-time assay for the detection of respiratory syncytial virus using RT-SIBA®. BMC Infectious Diseases 17(1):134. https://doi.org/10.1186/s12879-017-2227-x

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ali MM, Li F, Zhang Z, Zhang K, Kang D, Ankrum JA, Le XC, Zhao W (2014) Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. Chemical Society Reviews 43(10):3324

    Article  CAS  PubMed  Google Scholar 

  5. Piepenburg O, Williams CH, Stemple DL, Armes NA (2006) DNA detection using recombination proteins. PLoS Biol 4(7):e204. https://doi.org/10.1371/journal.pbio.0040204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Demidov VV (2002) Rolling-circle amplification in DNA diagnostics: the power of simplicity. Expert Rev Mol Diagn 2(6):542–548. https://doi.org/10.1586/14737159.2.6.542

    Article  CAS  PubMed  Google Scholar 

  7. Vincent M, Xu Y, Kong H (2004) Helicase-dependent isothermal DNA amplification. EMBO Rep 5(8):795–800. http://www.nature.com/embor/journal/v5/n8/suppinfo/7400200_S1.html

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Walker GT, Fraiser MS, Schram JL, Little MC, Nadeau JG, Malinowski DP (1992) Strand displacement amplification—an isothermal, in vitro DNA amplification technique. Nucleic Acids Res 20(7):1691–1696. https://doi.org/10.1093/nar/20.7.1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Van Ness J, Van Ness LK, Galas DJ (2003) Isothermal reactions for the amplification of oligonucleotides. Proc Natl Acad Sci 100(8):4504–4509. https://doi.org/10.1073/pnas.0730811100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28(12):e63. https://doi.org/10.1093/nar/28.12.e63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kundapur RR, Nema V (2016) Loop-mediated isothermal amplification: beyond microbial identification. Cogent Biology 2(1):1137110. https://doi.org/10.1080/23312025.2015.1137110

    Article  CAS  Google Scholar 

  12. Notomi T, Mori Y, Tomita N, Kanda H (2015) Loop-mediated isothermal amplification (LAMP): principle, features, and future prospects. J Microbiol 53(1):1–5. https://doi.org/10.1007/s12275-015-4656-9

    Article  CAS  PubMed  Google Scholar 

  13. Goto M, Honda E, Ogura A, Nomoto A, Hanaki K-I (2009) Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue. BioTechniques 46(3):167–172. https://doi.org/10.2144/000113072

    Article  CAS  PubMed  Google Scholar 

  14. Wang Y, Li H, Wang Y, Zhang L, Xu J, Ye C (2017) Loop-mediated isothermal amplification label-based gold nanoparticles lateral flow biosensor for detection of Enterococcus faecalis and Staphylococcus aureus. Front Microbiol 8:192–192. https://doi.org/10.3389/fmicb.2017.00192

  15. Prevention CfDCa (2014) Sexually transmitted disease surveillance 2013. U.S. Department of Health and Human Services; 2014. Centers for Disease Control and Prevention, Atlanta

    Google Scholar 

  16. Baugh LR, Hill AA, Brown EL, Hunter CP (2001) Quantitative analysis of mRNA amplification by in vitro transcription. Nucleic Acids Res 29(5):e29. https://doi.org/10.1093/nar/29.5.e29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gandelman OA, Church VL, Moore CA, Kiddle G, Carne CA, Parmar S, Jalal H, Tisi LC, Murray JAH (2010) Novel bioluminescent quantitative detection of nucleic acid amplification in real-time. PLoS One 5(11):e14155. https://doi.org/10.1371/journal.pone.0014155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Eboigbodin KE, Hoser MJ (2016) Multiplex strand invasion based amplification (mSIBA) assay for detection of Chlamydia trachomatis and Neisseria gonorrhoeae. Sci Rep 6:20487. https://doi.org/10.1038/srep20487. https://www.nature.com/articles/srep20487#supplementary-information

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Eboigbodin, K.E. (2019). Application of Loop-Mediated Isothermal Amplification Assay for the Detection of Chlamydia trachomatis and Neisseria gonorrhoeae. In: Brown, A. (eds) Chlamydia trachomatis. Methods in Molecular Biology, vol 2042. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9694-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9694-0_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9693-3

  • Online ISBN: 978-1-4939-9694-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics