Skip to main content

Measuring Nonspecific Protein–Protein Interactions by Dynamic Light Scattering

  • Protocol
  • First Online:
Protein Self-Assembly

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2039))

Abstract

Dynamic light scattering has become a method of choice for measuring and quantifying weak, nonspecific protein–protein interactions due to its ease of use, minimal sample consumption, and amenability to high-throughput screening via plate readers. A procedure is given on how to prepare protein samples, carry out measurements by commonly used experimental setups including flow through systems, plate readers, and cuvettes, and analyze the correlation functions to obtain diffusion coefficient data. The chapter concludes by a theoretical section that derives and rationalizes the correlation between diffusion coefficient measurements and protein–protein interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kirkwood JG, Goldberg RJ (1950) Light scattering arising from composition fluctuations in multi-component systems. J Chem Phys 18:54–57

    Article  CAS  Google Scholar 

  2. Casassa EF, Eisenberg H (1964) Thermodynamic analysis of multicomponent solutions. Adv Protein Chem 19:287–395

    Article  CAS  Google Scholar 

  3. Stockmayer WH (1950) Light scattering in multi-component systems. J Chem Phys 18:58–61

    Article  CAS  Google Scholar 

  4. Vilker VL, Colton CK, Smith KA (1981) The osmotic-pressure of concentrated protein solutions – effect of concentration and pH in saline solutions of bovine serum-albumin. J Colloid Interface Sci 79:548–566

    Article  CAS  Google Scholar 

  5. Binabaji E, Rao S, Zydney AL (2014) The osmotic pressure of highly concentrated monoclonal antibody solutions: effect of solution conditions. Biotechnol Bioeng 111:529–536

    Article  CAS  Google Scholar 

  6. Ang S, Rowe AJ (2010) Evaluation of the information content of sedimentation equilibrium data in self-interacting systems. Macromol Biosci 10:798–807

    Article  CAS  Google Scholar 

  7. Kuehner DE, Heyer C, Ramsch C, Fornefeld UM, Blanch HW, Prausnitz JM (1997) Interactions of lysozyme in concentrated electrolyte solutions from dynamic light-scattering measurements. Biophys J 73:3211–3224

    Article  CAS  Google Scholar 

  8. Muschol M, Rosenberger F (1995) Interactions in undersaturated and supersaturated lysozyme solutions: static and dynamic light scattering results. J Chem Phys 103:10424–10432

    Article  CAS  Google Scholar 

  9. Minton AP (2016) Recent applications of light scattering measurement in the biological and biopharmaceutical sciences. Anal Biochem 501:4–22

    Article  CAS  Google Scholar 

  10. Connolly BD, Petry C, Yadav S, Demeule B, Ciaccio N, Moore JMR et al (2012) Weak interactions govern the viscosity of concentrated antibody solutions: high-throughput analysis using the diffusion interaction parameter. Biophys J 103:69–78

    Article  CAS  Google Scholar 

  11. Lehermayr C, Mahler H-C, Maeder K, Fischer S (2011) Assessment of net charge and protein-protein interactions of different monoclonal antibodies. J Pharm Sci 100:2551–2562

    Article  CAS  Google Scholar 

  12. Saito S, Hasegawa J, Kobayashi N, Kishi N, Uchiyama S, Fukui K (2012) Behavior of monoclonal antibodies: relation between the second virial coefficient (B-2) at low concentrations and aggregation propensity and viscosity at high concentrations. Pharm Res 29:397–410

    Article  CAS  Google Scholar 

  13. Rosenbaum D, Zamora PC, Zukoski CF (1996) Phase behavior of small attractive colloidal particles. Phys Rev Lett 76:150–153

    Article  CAS  Google Scholar 

  14. Rosenbaum DF, Kulkarni A, Ramakrishnan S, Zukoski CF (1999) Protein interactions and phase behavior: sensitivity to the form of the pair potential. J Chem Phys 111:9882–9890

    Article  CAS  Google Scholar 

  15. Ahamed T, Esteban BNA, Ottens M, van Dedem GWK, van der Wielen LAM, Bisschops MAT et al (2007) Phase behavior of an intact monoclonal antibody. Biophys J 93:610–619

    Article  CAS  Google Scholar 

  16. Curtis RA, Lue L (2006) A molecular approach to bioseparations: protein-protein and protein-salt interactions. Chem Eng Sci 61:907–923

    Article  CAS  Google Scholar 

  17. Guo B, Kao S, McDonald H, Asanov A, Combs LL, Wilson WW (1999) Correlation of second virial coefficients and solubilities useful in protein crystal growth. J Cryst Growth 196:424–433

    Article  CAS  Google Scholar 

  18. George A, Wilson WW (1994) Predicting protein crystallization from a dilute-solution property. Acta Crystallogr D 50:361–365

    Article  CAS  Google Scholar 

  19. ten Wolde PR, Frenkel D (1997) Enhancement of protein crystal nucleation by critical density fluctuations. Science 277:1975–1978

    Article  CAS  Google Scholar 

  20. Piazza R, Peyre V, Degiorgio V (1998) “Sticky hard spheres” model of proteins near crystallization: a test based on the osmotic compressibility of lysozyme solutions. Phys Rev E 58:R2733–R2736

    Article  CAS  Google Scholar 

  21. Lekkerkerker HNW, Poon WCK, Pusey PN, Stroobants A, Warren PB (1992) Phase-behavior of colloid plus polymer mixtures. Europhys Lett 20:559–564

    Article  CAS  Google Scholar 

  22. Brummitt RK, Nesta DP, Chang LQ, Chase SF, Laue TM, Roberts CJ (2011) Nonnative aggregation of an IgG1 antibody in acidic conditions: part 1. Unfolding, colloidal interactions, and formation of high-molecular-weight aggregates. J Pharm Sci 100:2087–2103

    Article  CAS  Google Scholar 

  23. Sahin E, Grillo AO, Perkins MD, Roberts CJ (2010) Comparative effects of pH and ionic strength on protein-protein interactions, unfolding, and aggregation for IgG1 antibodies. J Pharm Sci 99:4830–4848

    Article  CAS  Google Scholar 

  24. Chi EY, Krishnan S, Kendrick BS, Chang BS, Carpenter JF, Randolph TW (2003) Roles of conformational stability and colloidal stability in the aggregation of recombinant human granulocyte colony-stimulating factor. Protein Sci 12:903–913

    Article  CAS  Google Scholar 

  25. Berne BJ, Pecora R (eds) (1976) Dynamic light scattering, with applications to chemistry, biology, and physics. John Wiley & Sons, New York, NY

    Google Scholar 

  26. McMillan WG, Mayer JE (1945) The statistical thermodynamics of multicomponent systems. J Chem Phys 13:276–305

    Article  CAS  Google Scholar 

  27. Israelachvili JN (ed) (1992) Intermolecular and surface forces: With applications to colloidal and biological systems, 2nd edn. Academic, New York, NY

    Google Scholar 

  28. Gruenberger A, Lai P-K, Blanco MA, Roberts CJ (2013) Coarse-grained modeling of protein second osmotic virial coefficients: Sterics and short-ranged attractions. J Phys Chem B 117:763–770

    Article  Google Scholar 

  29. Russel WB, Glendinning AB (1981) The effective diffusion-coefficient detected by dynamic light-scattering. J Chem Phys 74:948–952

    Article  CAS  Google Scholar 

  30. Nagele G (1996) On the dynamics and structure of charge-stabilized suspensions. Phys Rep 272:216–372

    Article  Google Scholar 

  31. Batchelor GK (1972) Sedimentation in a dilute dispersion of spheres. J Fluid Mech 52:245–268

    Article  Google Scholar 

  32. Batchelor GK (1982) Sedimentation in a dilute polydisperse system of interacting spheres. 1. General-theory. J Fluid Mech 119:379–408

    Article  Google Scholar 

  33. Felderhof BU (1978) Diffusion of interacting brownian particles. J Phys A Math Gen 11:929–937

    Article  Google Scholar 

  34. Jeffrey DJ, Onishi Y (1984) Calculation of the resistance and mobility functions for 2 unequal rigid spheres in low-reynolds-number flow. J Fluid Mech 139:261–290

    Article  Google Scholar 

  35. Roberts D, Keeling R, Tracka M, van der Walle CF, Uddin S, Warwicker J et al (2014) The role of electrostatics in protein-protein interactions of a monoclonal antibody. Mol Pharm 11:2475–2489

    Article  CAS  Google Scholar 

  36. Arzensek D, Kuzman D, Podgornik R (2012) Colloidal interactions between monoclonal antibodies in aqueous solutions. J Colloid Interface Sci 384:207–216

    Article  CAS  Google Scholar 

  37. Eberstein W, Georgalis Y, Saenger W (1994) Molecular interactions in crystallizing lysozyme solutions studied by photon-correlation spectroscopy. J Cryst Growth 143:71–78

    Article  CAS  Google Scholar 

  38. Li W, Persson BA, Morin M, Behrens MA, Lund M, Oskolkova MZ (2015) Charge-induced patchy attractions between proteins. J Phys Chem B 119:503–508

    Article  CAS  Google Scholar 

  39. Fusco D, Headd JJ, De Simone A, Wang J, Charbonneau P (2014) Characterizing protein crystal contacts and their role in crystallization: rubredoxin as a case study. Soft Matter 10:290–302

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin A. Curtis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Corbett, D., Bye, J.W., Curtis, R.A. (2019). Measuring Nonspecific Protein–Protein Interactions by Dynamic Light Scattering. In: McManus, J. (eds) Protein Self-Assembly. Methods in Molecular Biology, vol 2039. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9678-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9678-0_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9677-3

  • Online ISBN: 978-1-4939-9678-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics