Skip to main content

Characterization of Peptide–Oligonucleotide Complexes Using Electron Microscopy, Dynamic Light Scattering, and Protease Resistance Assay

  • Protocol
  • First Online:
Book cover Oligonucleotide-Based Therapies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2036))

Abstract

Cationic peptides designed for cellular delivery of nucleic acid molecules form noncovalent nanocomplexes with negatively charged oligonucleotides (ON). The electrostatically associated complexes are further compacted by hydrophobic interactions yielding nanoparticles (NP) of homogeneous shape and size that are efficiently taken up by cells. The shape and size of NP often correlate with the biological activity of delivered ON inside cells; and the stability and accessibility of NP in biological fluids govern its circulation in organism and the cellular uptake. Therefore, here we provide protocols for characterizing the shape and size and surface charge of peptide/ON NP by negative staining transmission electron microscopy (TEM) and dynamic light scattering (DLS) respectively, and analysis of NP stability against proteolytic degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Godfrey C, Desviat LR, Smedsrod B et al (2017) Delivery is key: lessons learnt from developing splice-switching antisense therapies. EMBO Mol Med 9:545–557

    Article  CAS  Google Scholar 

  2. Aartsma-Rus A (2016) New momentum for the field of oligonucleotide therapeutics. Mol Ther 24:193–194

    Article  CAS  Google Scholar 

  3. Nikam RR, Gore KR (2018) Journey of siRNA: clinical developments and targeted delivery. Nucleic Acid Ther 28:209–224

    Article  CAS  Google Scholar 

  4. Kulkarni JA, Cullis PR, van der Meel R (2018) Lipid nanoparticles enabling gene therapies: from concepts to clinical utility. Nucleic Acid Ther 28:146–157

    Article  CAS  Google Scholar 

  5. Stewart MP, Sharei A, Ding X et al (2016) In vitro and ex vivo strategies for intracellular delivery. Nature 538:183–192

    Article  CAS  Google Scholar 

  6. Stewart MP, Langer R, Jensen KF (2018) Intracellular delivery by membrane disruption: mechanisms, strategies, and concepts. Chem Rev 118:7409–7531

    Article  CAS  Google Scholar 

  7. Beierlein JM, McNamee LM, Ledley FD (2017) As technologies for nucleotide therapeutics mature, products emerge. Mol Ther Nucleic Acids 9:379–386

    Article  CAS  Google Scholar 

  8. Pooga M, Langel Ü (2015) Classes of cell-penetrating peptides. Methods Mol Biol 1324:3–28

    Article  Google Scholar 

  9. Lehto T, Ezzat K, Wood MJA et al (2016) Peptides for nucleic acid delivery. Adv Drug Deliv Rev 106:172–182

    Article  CAS  Google Scholar 

  10. Margus H, Padari K, Pooga M (2012) Cell-penetrating peptides as versatile vehicles for oligonucleotide delivery. Mol Ther 20:525–533

    Article  CAS  Google Scholar 

  11. Arukuusk P, Pärnaste L, Hällbrink M et al (2015) PepFects and NickFects for the intracellular delivery of nucleic acids. Methods Mol Biol 1324:303–315

    Article  Google Scholar 

  12. Veiman KL, Mäger I, Ezzat K et al (2013) PepFect14 peptide vector for efficient gene delivery in cell cultures. Mol Pharm 10:199–210

    Article  CAS  Google Scholar 

  13. Ezzat K, Helmfors H, Tudoran O et al (2012) Scavenger receptor-mediated uptake of cell-penetrating peptide nanocomplexes with oligonucleotides. FASEB J 26:1172–1180

    Article  CAS  Google Scholar 

  14. Andaloussi SE, Lehto T, Mäger I et al (2011) Design of a peptide-based vector, PepFect6, for efficient delivery of siRNA in cell culture and systemically in vivo. Nucleic Acids Res 39:3972–3987

    Article  Google Scholar 

  15. Urgard E, Lorents A, Klaas M et al (2016) Pre-administration of PepFect6-microRNA-146a nanocomplexes inhibits inflammatory responses in keratinocytes and in a mouse model of irritant contact dermatitis. J Control Release 235:195–204

    Article  CAS  Google Scholar 

  16. Margus H, Arukuusk P, Langel Ü et al (2016) Characteristics of cell-penetrating peptide/nucleic acid nanoparticles. Mol Pharm 13:172–179

    Article  CAS  Google Scholar 

  17. Herd H, Daum N, Jones AT et al (2013) Nanoparticle geometry and surface orientation influence mode of cellular uptake. ACS Nano 7:1961–1973

    Article  CAS  Google Scholar 

  18. Kulkarni JA, Darjuan MM, Mercer JE et al (2018) On the formation and morphology of lipid nanoparticles containing ionizable cationic lipids and siRNA. ACS Nano 12:4787–4795

    Article  CAS  Google Scholar 

  19. De Carlo S, Harris JR (2011) Negative staining and cryo-negative staining of macromolecules and viruses for TEM. Micron 42:117–131

    Article  Google Scholar 

  20. Philo JS (2006) Is any measurement method optimal for all aggregate sizes and types? AAPS J 8:E564–E571

    Article  CAS  Google Scholar 

  21. Domingues MM, Santiago PS, Castanho MA et al (2008) What can light scattering spectroscopy do for membrane-active peptide studies? J Pept Sci 14:394–400

    Article  CAS  Google Scholar 

  22. Borm PJ, Robbins D, Haubold S et al (2006) The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol 3:11

    Article  Google Scholar 

  23. Pärnaste L, Arukuusk P, Langel K et al (2017) The formation of nanoparticles between small interfering RNA and amphipathic cell-penetrating peptides. Mol Ther Nucleic Acids 7:1–10

    Article  Google Scholar 

  24. Freimann K, Arukuusk P, Kurrikoff K et al (2018) Formulation of stable and homogeneous cell-penetrating peptide NF55 nanoparticles for efficient gene delivery in vivo. Mol Ther Nucleic Acids 10:28–35

    Article  CAS  Google Scholar 

  25. Anthis NJ, Clore GM (2013) Sequence-specific determination of protein and peptide concentrations by absorbance at 205 nm. Protein Sci 22:851–858

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Estonian Ministry of Education and Research grant 0180019s11, PUT1617P (K.P. and M.P.) and IUT20-26 (L.P. and P.A.) from the Estonian Research Council. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margus Pooga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Padari, K., Porosk, L., Arukuusk, P., Pooga, M. (2019). Characterization of Peptide–Oligonucleotide Complexes Using Electron Microscopy, Dynamic Light Scattering, and Protease Resistance Assay. In: Gissberg, O., Zain, R., Lundin, K. (eds) Oligonucleotide-Based Therapies. Methods in Molecular Biology, vol 2036. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9670-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9670-4_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9669-8

  • Online ISBN: 978-1-4939-9670-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics