Skip to main content

Designing siRNA and Evaluating Its Effect on RNA Targets Using qPCR and Western Blot

  • Protocol
  • First Online:
  • 1801 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2036))

Abstract

The discovery of the RNA interference (RNAi) pathway followed by the usage of synthetic short-interfering RNAs (siRNA) has contributed greatly to the understanding of gene function. Carefully designed siRNAs can considerably improve siRNA specificity leading to more accurate and efficient gene silencing. Evaluation of gene knockdown is vital for optimization of siRNA efficacy. Here we describe the fundamental principles of siRNA design and strategies for evaluating gene knockdown.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Tuschl T (2001) RNA interference and small interfering RNAs. Chembiochem. 20(3):408-414doi: https://doi.org/10.1002/1439-7633(20010401)2:4<239::AID-CBIC239>3.0.CO;2-R (pii)

  2. Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811. https://doi.org/10.1038/35888

    Article  CAS  PubMed  Google Scholar 

  3. Johnsson P, Ackley A, Vidarsdottir L et al (2013) A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nat Struct Mol Biol 20(4):440–446. https://doi.org/10.1038/nsmb.2516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Martinez J, Patkaniowska A, Urlaub H et al (2002) Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110(5):563–574. https://doi.org/10.1016/S0092-8674(02)00908-X

    Article  CAS  PubMed  Google Scholar 

  5. Ui-Tei K, Naito Y, Nishi K et al (2008) Thermodynamic stability and Watson-Crick base pairing in the seed duplex are major determinants of the efficiency of the siRNA-based off-target effect. Nucleic Acids Res 36(22):7100–7109. https://doi.org/10.1093/nar/gkn902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu J, Carmell MA, Rivas FV et al (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305(5689):1437–1441. https://doi.org/10.1126/science.1102513

    Article  CAS  PubMed  Google Scholar 

  7. Elbashir SM, Harborth J, Weber K, Tuschl T (2002) Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26(2):199–213. https://doi.org/10.1016/S1046-2023(02)00023-3

    Article  CAS  PubMed  Google Scholar 

  8. Holen T, Amarzguioui M, Wiiger MT et al (2002) Positional effects of short interfering RNAs targeting the human coagulation trigger tissue factor. Nucleic Acids Res 30(8):1757–1766. https://doi.org/10.1093/nar/30.8.1757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115(2):209–216. https://doi.org/10.1016/S0092-8674(03)00801-8

    Article  CAS  PubMed  Google Scholar 

  10. Jackson AL, Bartz SR, Schelter J et al (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21(6):635–637. https://doi.org/10.1038/nbt831

    Article  CAS  PubMed  Google Scholar 

  11. Tafer H, Ameres SL, Obernosterer G et al (2008) The impact of target site accessibility on the design of effective siRNAs. Nat Biotechnol 26(83):578. https://doi.org/10.1038/nbt1404

    Article  CAS  PubMed  Google Scholar 

  12. Ameres SL, Martinez J, Schroeder R (2007) Molecular basis for target RNA recognition and cleavage by human RISC. Cell 130(1):101–112. https://doi.org/10.1016/j.cell.2007.04.037

    Article  CAS  PubMed  Google Scholar 

  13. Fakhr E, Zare F, Teimoori-Toolabi L (2016) Precise and efficient siRNA design: a key point in competent gene silencing. Cancer Gene Ther 23(4):73–82

    Article  CAS  Google Scholar 

  14. Naito Y, Yoshimura J, Morishita S, Ui-Tei K (2009) SiDirect 2.0: updated software for designing functional siRNA with reduced seed-dependent off-target effect. BMC Bioinformatics 10:392. https://doi.org/10.1186/1471-2105-10-392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Elbashir SM, Martinez J, Patkaniowska A et al (2001) Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J 20(23):6877–6888. https://doi.org/10.1093/emboj/20.23.6877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Reynolds A, Leake D, Boese Q et al (2004) Rational siRNA design for RNA interference. Nat Biotechnol 22(3):326–330. https://doi.org/10.1038/nbt936

    Article  CAS  PubMed  Google Scholar 

  17. Fedorov Y, Anderson EM, Birmingham A et al (2006) Off-target effects by siRNA can induce toxic phenotype. RNA 12(7):1188–1196. https://doi.org/10.1261/rna.28106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hornung V, Guenthner-Biller M, Bourquin C et al (2005) Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 11(3):263–270. https://doi.org/10.1038/nm1191

    Article  CAS  PubMed  Google Scholar 

  19. Judge AD, Sood V, Shaw JR et al (2005) Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 23(4):457–462. https://doi.org/10.1038/nbt1081

    Article  PubMed  Google Scholar 

  20. Sharan RN, Vaiphei ST, Nongrum S et al (2015) Consensus reference gene(s) for gene expression studies in human cancers: end of the tunnel visible? Cell Oncol 38(6):419–431

    Article  CAS  Google Scholar 

  21. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3(6):1101–1108. https://doi.org/10.1038/nprot.2008.73

    Article  CAS  PubMed  Google Scholar 

  22. Meade BR, Gogoi K, Hamil AS et al (2014) Efficient delivery of RNAi prodrugs containing reversible charge-neutralizing phosphotriester backbone modifications. Nat Biotechnol 32(12):1256–1261. https://doi.org/10.1038/nbt.3078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hagopian JC, Hamil AS, van den Berg A et al (2017) Induction of RNAi responses by short left-handed hairpin RNAi triggers. Nucleic Acid Ther 27(5):260–271. https://doi.org/10.1089/nat.2017.0686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim DH, Behlke MA, Rose SD et al (2005) Synthetic dsRNA dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol 23(2):222–226. https://doi.org/10.1038/nbt1051

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Swedish Foundation for Strategic Research (C.P.A.) and the Swedish Childhood Cancer Foundation (C.P.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Palm-Apergi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vidarsdottir, L., Goroshchuk, O., Kolosenko, I., Palm-Apergi, C. (2019). Designing siRNA and Evaluating Its Effect on RNA Targets Using qPCR and Western Blot. In: Gissberg, O., Zain, R., Lundin, K. (eds) Oligonucleotide-Based Therapies. Methods in Molecular Biology, vol 2036. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9670-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9670-4_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9669-8

  • Online ISBN: 978-1-4939-9670-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics