Skip to main content

A Sensitized Genetic Screen to Identify Novel Components and Regulators of the Host Antiviral RNA Interference Pathway

  • Protocol
  • First Online:
Book cover Antiviral Resistance in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2028))

Abstract

RNA interference (RNAi) acts as a natural defense mechanism against virus infection in plants and animals. Much is known about the antiviral function of the core RNAi pathway components identified mostly by genetic screens based on specific RNAi of cellular mRNAs. Here we describe a sensitized genetic screening system for the identification of novel components and regulators in the antiviral RNAi pathway established in the model plant species Arabidopsis thaliana. Our genetic screen identifies antiviral RNAi (avi)-defective Arabidopsis mutants that develop visible disease symptoms after infection with CMV-∆2b, a Cucumber mosaic virus mutant deficient in the expression of its viral suppressor of RNAi. Loss of RNAi suppression renders CMV-∆2b highly susceptible to antiviral RNAi so that it replicates to high levels and induces disease development only in avi mutants. This chapter provides the methods for the propagation of CMV-∆2b, preparation of the mutant plants for virus inoculation, identification and characterization of avi mutants, and cloning of the genes responsible for the mutant phenotype by either the genetic linkage to T-DNA insertion or a mapping-by-sequencing approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Matranga C, Zamore PD (2007) Small silencing RNAs. Curr Biol 17:R789–R793

    Article  CAS  Google Scholar 

  2. Ding SW (2010) RNA-based antiviral immunity. Nat Rev Immunol 10:632–644

    Article  CAS  Google Scholar 

  3. Li Y, Basavappa M, Lu J, Dong S, Cronkite DA, Prior JT, Reinecker HC, Hertzog P, Han Y, Li WX, Cheloufi S, Karginov FV, Ding SW, Jeffrey KL (2016) Induction and suppression of antiviral RNA interference by influenza a virus in mammalian cells. Nat Microbiol 2:16250

    Article  CAS  Google Scholar 

  4. Li Y, Lu J, Han Y, Fan X, Ding SW (2013) RNA interference functions as an antiviral immunity mechanism in mammals. Science 342:231–234

    Article  CAS  Google Scholar 

  5. Maillard PV, Ciaudo C, Marchais A, Li Y, Jay F, Ding SW, Voinnet O (2013) Antiviral RNA interference in mammalian cells. Science 342:235–238

    Article  CAS  Google Scholar 

  6. Qiu Y, Xu Y, Zhang Y, Zhou H, Deng YQ, Li XF, Miao M, Zhang Q, Zhong B, Hu Y, Zhang FC, Wu L, Qin CF, Zhou X (2017) Human virus-derived small RNAs can confer antiviral immunity in mammals. Immunity 46:992–1004

    Article  CAS  Google Scholar 

  7. Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952

    Article  CAS  Google Scholar 

  8. Li HW, Li WX, Ding SW (2002) Induction and suppression of RNA silencing by an animal virus. Science 296:1319–1321

    Article  CAS  Google Scholar 

  9. Garcia-Ruiz H, Takeda A, Chapman EJ, Sullivan CM, Fahlgren N, Brempelis KJ, Carrington JC (2010) Arabidopsis RNA-dependent RNA polymerases and dicer-like proteins in antiviral defense and small interfering RNA biogenesis during turnip mosaic virus infection. Plant Cell 22:481–496

    Article  CAS  Google Scholar 

  10. Wang XB, Wu Q, Ito T, Cillo F, Li WX, Chen X, Yu JL, Ding SW (2010) RNAi-mediated viral immunity requires amplification of virus-derived siRNAs in Arabidopsis thaliana. Proc Natl Acad Sci U S A 107:484–489

    Article  CAS  Google Scholar 

  11. Goic B, Stapleford KA, Frangeul L, Doucet AJ, Gausson V, Blanc H, Schemmel-Jofre N, Cristofari G, Lambrechts L, Vignuzzi M, Saleh MC (2016) Virus-derived DNA drives mosquito vector tolerance to arboviral infection. Nat Commun 7:12410

    Article  CAS  Google Scholar 

  12. Goic B, Vodovar N, Mondotte JA, Monot C, Frangeul L, Blanc H, Gausson V, Vera-Otarola J, Cristofari G, Saleh MC (2013) RNA-mediated interference and reverse transcription control the persistence of RNA viruses in the insect model Drosophila. Nat Immunol 14:396–403

    Article  CAS  Google Scholar 

  13. Tassetto M, Kunitomi M, Andino R (2017) Circulating immune cells mediate a systemic RNAi-based adaptive antiviral response in Drosophila. Cell 169:314–325.e313

    Article  CAS  Google Scholar 

  14. Cogoni C, Macino G (1999) Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature 399:166–169

    Article  CAS  Google Scholar 

  15. Dalmay T, Hamilton A, Rudd S, Angell S, Baulcombe DC (2000) An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101:543–553

    Article  CAS  Google Scholar 

  16. Mourrain P, Beclin C, Elmayan T, Feuerbach F, Godon C, Morel JB, Jouette D, Lacombe AM, Nikic S, Picault N, Remoue K, Sanial M, Vo TA, Vaucheret H (2000) Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101:533–542

    Article  CAS  Google Scholar 

  17. Park W, Li J, Song R, Messing J, Chen X (2002) CARPEL FACTORY, a dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 12:1484–1495

    Article  CAS  Google Scholar 

  18. Tabara H, Sarkissian M, Kelly WG, Fleenor J, Grishok A, Timmons L, Fire A, Mello CC (1999) The rde-1 gene, RNA interference, and transposon silencing in C-elegans. Cell 99:123–132

    Article  CAS  Google Scholar 

  19. Guo Z, Lu J, Wang X, Zhan B, Li W, Ding SW (2017a) Lipid flippases promote antiviral silencing and the biogenesis of viral and host siRNAs in Arabidopsis. Proc Natl Acad Sci U S A 114:1377–1382

    Article  CAS  Google Scholar 

  20. Guo Z, Wang XB, Wang Y, Li WX, Gal-On A, Ding SW (2017b) Identification of a new host factor required for antiviral RNAi and amplification of viral siRNAs. Plant Physiol 176:1587–1597

    Article  Google Scholar 

  21. Wang XB, Jovel J, Udomporn P, Wang Y, Wu Q, Li WX, Gasciolli V, Vaucheret H, Ding SW (2011) The 21-nucleotide, but not 22-nucleotide, viral secondary small interfering RNAs direct potent antiviral defense by two cooperative argonautes in Arabidopsis thaliana. Plant Cell 23:1625–1638

    Article  CAS  Google Scholar 

  22. Diaz-Pendon JA, Li F, Li WX, Ding SW (2007) Suppression of antiviral silencing by cucumber mosaic virus 2b protein in Arabidopsis is associated with drastically reduced accumulation of three classes of viral small interfering RNAs. Plant Cell 19:2053–2063

    Article  CAS  Google Scholar 

  23. Scott H (1963) Purification of cucumber mosaic virus. Virology 20:103–106

    Article  CAS  Google Scholar 

  24. Peden KW, Symons RH (1973) Cucumber mosaic virus contains a functionally divided genome. Virology 53:487–492

    Article  CAS  Google Scholar 

  25. Duan CG, Fang YY, Zhou BJ, Zhao JH, Hou WN, Zhu H, Ding SW, Guo HS (2012) Suppression of Arabidopsis ARGONAUTE1-mediated slicing, transgene-induced RNA silencing, and DNA methylation by distinct domains of the cucumber mosaic virus 2b protein. Plant Cell 24:259–274

    Article  CAS  Google Scholar 

  26. Fang YY, Zhao JH, Liu SW, Wang S, Duan CG, Guo HS (2016) CMV2b-AGO interaction is required for the suppression of RDR-dependent antiviral silencing in Arabidopsis. Front Microbiol 7:1329

    PubMed  PubMed Central  Google Scholar 

  27. Li HW, Lucy AP, Guo HS, Li WX, Ji LH, Wong SM, Ding SW (1999) Strong host resistance targeted against a viral suppressor of the plant gene silencing defence mechanism. EMBO J 18:2683–2691

    Article  CAS  Google Scholar 

  28. Gao H, Yang M, Yang H, Qin Y, Zhu B, Xu G, Xie C, Wu D, Zhang X, Li WX, Yan J, Song S, Qi T, Ding SW, Xie D (2017) Arabidopsis ENOR3 regulates RNAi-mediated antiviral defense. J Genet Genomics 45:33–40

    Article  Google Scholar 

  29. Zhu B, Gao H, Xu G, Wu D, Song S, Jiang H, Zhu S, Qi T, Xie D (2017) Arabidopsis ALA1 and ALA2 mediate RNAi-based antiviral immunity. Front Plant Sci 8:422

    PubMed  PubMed Central  Google Scholar 

  30. Soards AJ, Murphy AM, Palukaitis P, Carr JP (2002) Virulence and differential local and systemic spread of cucumber mosaic virus in tobacco are affected by the CMV 2b protein. Mol Plant-Microbe Interact 15:647–653

    Article  CAS  Google Scholar 

  31. Coffman SR, Lu J, Guo X, Zhong J, Jiang H, Broitman-Maduro G, Li WX, Lu R, Maduro M, Ding SW (2017) Caenorhabditis elegans RIG-I homolog mediates antiviral RNA interference downstream of dicer-dependent biogenesis of viral small interfering RNAs. MBio 8:e00264–e00217

    Article  CAS  Google Scholar 

  32. Lu R, Yigit E, Li WX, Ding SW (2009) An RIG-I-like RNA helicase mediates antiviral RNAi downstream of viral siRNA biogenesis in Caenorhabditis elegans. PLoS Pathog 5:e1000286

    Article  Google Scholar 

  33. Guo X, Zhang R, Wang J, Ding SW, Lu R (2013) Homologous RIG-I-like helicase proteins direct RNAi-mediated antiviral immunity in C. elegans by distinct mechanisms. Proc Natl Acad Sci U S A 110:16085–16090

    Article  CAS  Google Scholar 

  34. Ding SW, Li WX, Symons RH (1995) A novel naturally-occurring hybrid gene encoded by a plant RNA virus facilitates long-distance virus movement. EMBO J 14:5762–5772

    Article  CAS  Google Scholar 

  35. Scholthof HB, Scholthof KB, Jackson AO (1995) Identification of tomato bushy stunt virus host-specific symptom determinants by expression of individual genes from a potato virus X vector. Plant Cell 7:1157–1172

    Article  CAS  Google Scholar 

  36. Han YH, Luo YJ, Wu Q, Jovel J, Wang XH, Aliyari R, Han C, Li WX, Ding SW (2011) RNA-based immunity terminates viral infection in adult Drosophila in the absence of viral suppression of RNA interference: characterization of viral small interfering RNA populations in wild-type and mutant flies. J Virol 85:13153–13163

    Article  CAS  Google Scholar 

  37. Guo Z, Li Y, Ding SW (2019) Small RNA-based antimicrobial immunity. Nat Rev Immunol 19, 31–44

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by grants from the US Department of Agriculture Research Service (6659-22000-025), the US-Israel Binational Agricultural Research and Development Fund, National Institutes of Health (R01AI52447 and GM94396), by the Agricultural Experimental Station of the University of California, Riverside (to S.-W.D.)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xian-Bing Wang or Shou-Wei Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Guo, Z., Wang, XB., Li, WX., Ding, SW. (2019). A Sensitized Genetic Screen to Identify Novel Components and Regulators of the Host Antiviral RNA Interference Pathway. In: Kobayashi, K., Nishiguchi, M. (eds) Antiviral Resistance in Plants. Methods in Molecular Biology, vol 2028. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9635-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9635-3_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9634-6

  • Online ISBN: 978-1-4939-9635-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics