Skip to main content

Assessment of β-Cell Replication in Isolated Rat Islets of Langerhans

  • Protocol
  • First Online:
Progenitor Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2029))

  • 1105 Accesses

Abstract

Pancreatic β-cells in the islets of Langerhans secrete insulin in response to the rise in glucose levels following food intake. The hypoglycemic action of insulin applies a strong evolutionary brake on β-cell division. However, under some conditions β-cells can be stimulated to enter cell cycle progression and divide, for example following exposure to increased glucose levels or during pregnancy. Here, a protocol is described for the isolation of rat adult islets of Langerhans, followed by culture of intact islets in Matrigel and measurement of β-cell replication by the incorporation of ethynyldeoxyuridine (EdU). EdU positive cells are revealed by a click reaction, nuclei are visualized using a DNA-binding fluorophore (Hoechst 33342), and β-cells are identified using immunofluorescence detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meier JJ, Butler AE, Saisho Y, Monchamp T, Galasso R, Bhushan A, Rizza RA, Butler PC (2008) Beta-cell replication is the primary mechanism subserving the postnatal expansion of beta-cell mass in humans. Diabetes 57(6):1584–1594

    Article  CAS  Google Scholar 

  2. Butler PC, Meier JJ, Butler AE, Bhushan A (2007) The replication of beta cells in normal physiology, in disease and for therapy. Nat Clin Pract Endocrinol Metab 3(11):758–768

    Article  CAS  Google Scholar 

  3. Van Assche FA, Aerts L, de PF (1978) A morphological study of the endocrine pancreas in human pregnancy. Br J Obstet Gynaecol 85(11):818–820

    Article  Google Scholar 

  4. Butler AE, Cao-Minh L, Galasso R, Rizza RA, Corradin A, Cobelli C, Butler PC (2010) Adaptive changes in pancreatic beta cell fractional area and beta cell turnover in human pregnancy. Diabetologia 53(10):2167–2176. https://doi.org/10.1007/s00125-010-1809-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Saisho Y, Butler AE, Meier JJ, Monchamp T, Allen-Auerbach M, Rizza RA, Butler PC (2007) Pancreas volumes in humans from birth to age one hundred taking into account sex, obesity, and presence of type-2 diabetes. Clin Anat 20(8):933–942. https://doi.org/10.1002/ca.20543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rhodes CJ (2005) Type 2 diabetes-a matter of beta-cell life and death? Science 307(5708):380–384

    Article  CAS  Google Scholar 

  7. Ackermann AM, Gannon M (2007) Molecular regulation of pancreatic beta-cell mass development, maintenance, and expansion. J Mol Endocrinol 38(1-2):193–206

    Article  CAS  Google Scholar 

  8. Dor Y, Brown J, Martinez OI, Melton DA (2004) Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429(6987):41–46

    Article  CAS  Google Scholar 

  9. Georgia S, Bhushan A (2004) Beta cell replication is the primary mechanism for maintaining postnatal beta cell mass. J Clin Invest 114(7):963–968. https://doi.org/10.1172/JCI22098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schmidt SF, Madsen JG, Frafjord KO, Poulsen L, Salo S, Boergesen M, Loft A, Larsen BD, Madsen MS, Holst JJ, Maechler P, Dalgaard LT, Mandrup S (2016) Integrative genomics outlines a biphasic glucose response and a ChREBP-RORgamma axis regulating proliferation in beta cells. Cell Rep 16(9):2359–2372. https://doi.org/10.1016/j.celrep.2016.07.063

    Article  CAS  PubMed  Google Scholar 

  11. Donath MY, Halban PA (2004) Decreased beta-cell mass in diabetes: significance, mechanisms and therapeutic implications. Diabetologia 47(3):581–589

    Article  CAS  Google Scholar 

  12. Yesil P, Michel M, Chwalek K, Pedack S, Jany C, Ludwig B, Bornstein SR, Lammert E (2009) A new collagenase blend increases the number of islets isolated from mouse pancreas. Islets 1(3):185–190. https://doi.org/10.4161/isl.1.3.9556

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louise T. Dalgaard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dalgaard, L.T. (2019). Assessment of β-Cell Replication in Isolated Rat Islets of Langerhans. In: Joglekar, M., Hardikar, A. (eds) Progenitor Cells. Methods in Molecular Biology, vol 2029. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9631-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9631-5_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9630-8

  • Online ISBN: 978-1-4939-9631-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics