Skip to main content

CRISPR/Cas9-Mediated Knockout of Physcomitrella patens Phytochromes

  • Protocol
  • First Online:
Phytochromes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2026))

Abstract

Here we describe procedures for gene disruption and excision in Physcomitrella using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat/CRISPR-associated 9) methods, exemplarily targeting phytochrome (PHY) gene loci. Thereby double-strand breaks (DSBs) are induced using a single guide RNA (sgRNA) with the Cas9 nuclease, leading to insertions or deletions (indels) due to incorrect repair by the nonhomologous-end joining (NHEJ) mechanism. We also include protocols for excision of smaller genomic fragments or whole genes either with or without homologous recombination-assisted repair. The protocol can be adapted to target several loci simultaneously, thereby allowing the physiological analysis of phenotypes that would be masked by functional redundancy. In our particular case, multiple PHY gene knockouts would likely be valuable in understanding phytochrome functions in mosses and, perhaps, higher plants too. Target sites for site-directed induction of DSBs are predicted with the CRISPOR online-tool and are inserted in silico into sequence matrices for the design of sgRNA expression cassettes. The resulting DNAs are cloned into Gateway DONOR vectors and the respective expression plasmids used for moss cotransformation with a Cas9 expression plasmid and a selectable marker (either on a separate plasmid or on one of the other plasmids). After the selection process, genomic DNA is extracted and transformants are analyzed by PCR fingerprinting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 22 June 2021

    In the original version of this book, Chapter 9 was inadvertently published with few errors in Table 2 data. This has now been rectified in this revised version of the book.

References

  1. Cove DJ (2000) The generation and modification of cell polarity. J Exp Bot 51:831–838

    Article  CAS  Google Scholar 

  2. Jenkins GI, Cove DJ (1983) Light requirements for regeneration of protoplasts of the moss Physcomitrella patens. Planta 157:39–45

    Article  CAS  Google Scholar 

  3. Ashton NW, Schulze A, Hall P, Bandurski RS (1985) Estimation of indole-3-acetic acid in gametophytes of the moss, Physcomitrella patens. Planta 164:142–144

    Article  CAS  Google Scholar 

  4. Jenkins GI, Cove DJ (1983) Phototropism and polarotropism of primary chloronemata of the moss Physcomitrella patens: responses of mutant strains. Planta 159:432–438

    Article  CAS  Google Scholar 

  5. Jenkins GI, Cove DJ (1983) Phototropism and polarotropism of primary chloronemata of the moss Physcomitrella patens. responses of the wild-type. Planta 158:357–364

    Google Scholar 

  6. Jenkins GI, Courtice GR, Cove DJ (1986) Gravitropic responses of wild-type and mutant strains of the moss Physcomitrella patens. Plant Cell Environ 9:637–644

    Article  CAS  Google Scholar 

  7. Schaefer DG, Zrÿd JP (1997) Efficient gene targeting in the moss Physcomitrella patens. Plant J 11:1195–1206

    Article  CAS  Google Scholar 

  8. Cove DJ, Perroud P-F, Charron AJ, McDaniel SF, Khandelwal A, Quatrano RS (2009) Isolation of DNA, RNA, and protein from the moss Physcomitrella patens gametophytes. Cold Spring Harb Protoc 2009(2):pdb.prot5146. https://doi.org/10.1101/pdb.prot5146

    Article  PubMed  Google Scholar 

  9. Cove DJ, Perroud P-F, Charron AJ, McDaniel SF, Khandelwal A, Quatrano RS (2009) Transformation of moss Physcomitrella patens gametophytes using a biolistic projectile delivery system. Cold Spring Harb Protoc 2009(2):pdb.prot5145. https://doi.org/10.1101/pdb.prot5145

    Article  PubMed  Google Scholar 

  10. Cove DJ, Perroud P-F, Charron AJ, McDaniel SF, Khandelwal A, Quatrano RS (2009) Transformation of the moss Physcomitrella patens using T-DNA mutagenesis. Cold Spring Harb Protoc 2009(2):pdb.prot5144. https://doi.org/10.1101/pdb.prot5144

    Article  PubMed  Google Scholar 

  11. Cove DJ, Perroud P-F, Charron AJ, McDaniel SF, Khandelwal A, Quatrano RS (2009) Transformation of the moss Physcomitrella patens using direct DNA uptake by protoplasts. Cold Spring Harb Protoc 2009(2):pdb.prot5143. https://doi.org/10.1101/pdb.prot5143

    Article  PubMed  Google Scholar 

  12. Cove DJ, Perroud P-F, Charron AJ, McDaniel SF, Khandelwal A, Quatrano RS (2009) Isolation and regeneration of protoplasts of the moss Physcomitrella patens. Cold Spring Harb Protoc 2009(2):pdb.prot5140. https://doi.org/10.1101/pdb.prot5140

    Article  PubMed  Google Scholar 

  13. Cove DJ, Perroud P-F, Charron AJ, McDaniel SF, Khandelwal A, Quatrano RS (2009) Culturing the moss Physcomitrella patens. Cold Spring Harb Protoc 2009(2):pdb.prot5136. https://doi.org/10.1101/pdb.prot5136

    Article  PubMed  Google Scholar 

  14. Rensing SA, Lang D, Zimmer AD et al (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69

    Article  CAS  Google Scholar 

  15. Cove DJ, Schild A, Ashton NW, Hartmann E (1978) Genetic and physiological studies of the effect of light on the development of the moss, Physcomitrella patens. Photochem Photobiol 27:249–254

    Article  Google Scholar 

  16. Possart A, Hiltbrunner A (2013) An evolutionarily conserved signaling mechanism mediates far-red light responses in land plants. Plant Cell 25:102–114

    Article  CAS  Google Scholar 

  17. Chen Y-R, Su Y, Tu S-L (2012) Distinct phytochrome actions in nonvascular plants revealed by targeted inactivation of phytobilin biosynthesis. Proc Natl Acad Sci U S A 109:8310–8315

    Article  CAS  Google Scholar 

  18. Yamawaki S, Yamashino T, Nakanishi H, Mizuno T (2011) Functional characterization of HY5 homolog genes involved in early light-signaling in Physcomitrella patens. Biosci Biotechnol Biochem 75:1533–1539

    Article  CAS  Google Scholar 

  19. Possart A, Xu T, Paik I et al (2017) Characterization of phytochrome interacting factors from the moss Physcomitrella patens illustrates conservation of phytochrome signaling modules in land plants. Plant Cell 29:310–330

    Article  CAS  Google Scholar 

  20. Xu T, Hiltbrunner A (2017) PHYTOCHROME INTERACTING FACTORs from Physcomitrella patens are active in Arabidopsis and complement the pif quadruple mutant. Plant Signal Behav 12:e1388975

    Article  Google Scholar 

  21. Cove D, Knight C (1987) Gravitropism and phototropism in the moss, Physcomitrella patens. In: Developmental mutants in higher plants. Cambridge University Press, London, pp 181–196

    Google Scholar 

  22. Mittmann F, Brücker G, Zeidler M, Repp A, Abts T, Hartmann E, Hughes J (2004) Targeted knockout in Physcomitrella reveals direct actions of phytochrome in the cytoplasm. Proc Natl Acad Sci U S A 101:13939–13944

    Article  CAS  Google Scholar 

  23. Kadota A, Sato Y, Wada M (2000) Intracellular chloroplast photorelocation in the moss Physcomitrella patens is mediated by phytochrome as well as by a blue-light receptor. Planta 210:932–937

    Article  CAS  Google Scholar 

  24. Sato Y, Wada M, Kadota A (2001) Choice of tracks, microtubules and/or actin filaments for chloroplast photo-movement is differentially controlled by phytochrome and a blue light receptor. J Cell Sci 114:269–279

    Article  CAS  Google Scholar 

  25. Uenaka H, Kadota A (2007) Functional analyses of the Physcomitrella patens phytochromes in regulating chloroplast avoidance movement. Plant J 51:1050–1061

    Article  CAS  Google Scholar 

  26. Hughes J (2013) Phytochrome cytoplasmic signaling. Annu Rev Plant Biol 64:377–402

    Article  CAS  Google Scholar 

  27. Mittmann F, Dienstbach S, Weisert A, Forreiter C (2009) Analysis of the phytochrome gene family in Ceratodon purpureus by gene targeting reveals the primary phytochrome responsible for photo- and polarotropism. Planta 230:27–37

    Article  CAS  Google Scholar 

  28. Li F-W, Melkonian M, Rothfels CJ, Villarreal JC, Stevenson DW, Graham SW, Wong GK-S, Pryer KM, Mathews S (2015) Phytochrome diversity in green plants and the origin of canonical plant phytochromes. Nat Commun 6:7852

    Article  CAS  Google Scholar 

  29. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  Google Scholar 

  30. Barrangou R, Doudna JA (2016) Applications of CRISPR technologies in research and beyond. Nat Biotechnol 34:933–941

    Article  CAS  Google Scholar 

  31. Puchta H (2017) Applying CRISPR/Cas for genome engineering in plants: the best is yet to come. Curr Opin Plant Biol 36:1–8

    Article  CAS  Google Scholar 

  32. Lopez-Obando M, Hoffmann B, Géry C, Guyon-Debast A, Téoulé E, Rameau C, Bonhomme S, Nogué F (2016) Simple and efficient targeting of multiple genes through CRISPR-Cas9 in Physcomitrella patens. G3 (Bethesda) 6:3647–3653

    Article  CAS  Google Scholar 

  33. Nomura T, Sakurai T, Osakabe Y, Osakabe K, Sakakibara H (2016) Efficient and heritable targeted mutagenesis in mosses using the CRISPR/Cas9 system. Plant Cell Physiol 57:2600–2610

    Article  CAS  Google Scholar 

  34. Collonnier C, Epert A, Mara K, Maclot F, Guyon-Debast A, Charlot F, White C, Schaefer DG, Nogué F (2017) CRISPR-Cas9-mediated efficient directed mutagenesis and RAD51-dependent and RAD51-independent gene targeting in the moss Physcomitrella patens. Plant Biotechnol J 15:122–131

    Article  CAS  Google Scholar 

  35. Collonnier C, Guyon-Debast A, Maclot F, Mara K, Charlot F, Nogué F (2017) Towards mastering CRISPR-induced gene knock-in in plants: survey of key features and focus on the model Physcomitrella patens. Methods 121–122:103–117

    Article  Google Scholar 

  36. Ashton NW, Cove DJ (1977) The isolation and preliminary characterisation of auxotrophic and analogue resistant mutants of the moss, Physcomitrella patens. Mol Gen Genet 154:87–95

    Article  Google Scholar 

  37. Haeussler M, Schönig K, Eckert H et al (2016) Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol 17:148

    Article  Google Scholar 

  38. Hsu PD, Scott DA, Weinstein JA et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832

    Article  CAS  Google Scholar 

  39. Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

Download references

Acknowledgments

This work was supported by DFG grant Hu702/5 to JH and by French ANR grant ANR11-BTBR-0001-GENIUS to NF. The IJPB benefits from the support of the LabEx Saclay Plant Sciences-SPS (ANR-10-LABX-0040-SPS). We thank Pierre François Perroud for his expertise and advice in the context of moss transformation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fabien Nogué or Jon Hughes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ermert, A.L., Nogué, F., Stahl, F., Gans, T., Hughes, J. (2019). CRISPR/Cas9-Mediated Knockout of Physcomitrella patens Phytochromes. In: Hiltbrunner, A. (eds) Phytochromes. Methods in Molecular Biology, vol 2026. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9612-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9612-4_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9611-7

  • Online ISBN: 978-1-4939-9612-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics