Skip to main content

Implementation of Transposon Mutagenesis in Bifidobacterium

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2016))

Abstract

Random transposon mutagenesis allows for relatively rapid, genome-wide surveys to detect genes involved in functional traits, by performing screens of mutant libraries. This approach has been widely applied to identify genes responsible for activities of interest in multiple eukaryote and prokaryote organisms, although most studies on microorganisms have focused on pathogenic and clinically relevant bacteria. In this chapter we describe the implementation of an in vitro Tn5-based transposome strategy to generate a large collection of random mutants in the gut commensal Bifidobacterium breve UCC2003, and discuss considerations when applying this mutagenesis system to other Bifidobacterium species or strains of interest.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Tojo R, Suárez A, Clemente MG et al (2014) Intestinal microbiota in health and disease: role of bifidobacteria in gut homeostasis. World J Gastroenterol 20:15163–15176. https://doi.org/10.3748/wjg.v20.i41.15163

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bottacini F, van Sinderen D, Ventura M (2017) Omics of bifidobacteria: research and insights into their health-promoting activities. Biochem J 474:4137–4152. https://doi.org/10.1042/BCJ20160756

    Article  CAS  PubMed  Google Scholar 

  3. Brancaccio VF, Zhurina DS, Riedel CU (2013) Tough nuts to crack: site-directed mutagenesis of bifidobacteria remains a challenge. Bioengineered 4:197–202. https://doi.org/10.4161/bioe.23381

    Article  PubMed  PubMed Central  Google Scholar 

  4. O’Callaghan A, Bottacini F, O’Connell Motherway M, van Sinderen D (2015) Pangenome analysis of Bifidobacterium longum and site-directed mutagenesis through by-pass of restriction-modification systems. BMC Genomics 16:832. https://doi.org/10.1186/s12864-015-1968-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hidalgo-Cantabrana C, Sánchez B, Álvarez-Martín P et al (2015) A single mutation in the gene responsible for the mucoid phenotype of Bifidobacterium animalis subsp. lactis confers surface and functional characteristics. Appl Environ Microbiol 81:7960–7968. https://doi.org/10.1128/AEM.02095-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sakaguchi K, He J, Tani S et al (2012) A targeted gene knockout method using a newly constructed temperature-sensitive plasmid mediated homologous recombination in Bifidobacterium longum. Appl Microbiol Biotechnol 95:499–509. https://doi.org/10.1007/s00253-012-4090-4

    Article  CAS  PubMed  Google Scholar 

  7. O’ Connell Motherway M, Watson D, Bottacini F et al (2014) Identification of restriction-modification systems of Bifidobacterium animalis subsp. lactis CNCM I-2494 by SMRT sequencing and associated methylome analysis. PLoS One 9:e94875. https://doi.org/10.1371/journal.pone.0094875

    Article  CAS  PubMed  Google Scholar 

  8. Hirayama Y, Sakanaka M, Fukuma H et al (2012) Development of a double-crossover markerless gene deletion system in Bifidobacterium longum: functional analysis of the α-galactosidase gene for raffinose assimilation. Appl Environ Microbiol 78(14):4984–4994. https://doi.org/10.1128/AEM.00588-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. O’Connell Motherway M, O’Driscoll J, Fitzgerald GF, Van Sinderen D (2009) Overcoming the restriction barrier to plasmid transformation and targeted mutagenesis in Bifidobacterium breve UCC2003. Microb Biotechnol 2:321–332. https://doi.org/10.1111/j.1751-7915.2008.00071.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bottacini F, Morrissey R, Roberts RJ et al (2018) Comparative genome and methylome analysis reveals restriction/modification system diversity in the gut commensal Bifidobacterium breve. Nucleic Acids Res 46:1860–1877. https://doi.org/10.1093/nar/gkx1289

    Article  CAS  PubMed  Google Scholar 

  11. Picardeau M (2010) Transposition of fly mariner elements into bacteria as a genetic tool for mutagenesis. Genetica 138:551–558. https://doi.org/10.1007/s10709-009-9408-5

    Article  CAS  PubMed  Google Scholar 

  12. Reznikoff WS, Goryshin IY, Jendrisak JJ (2004) Tn5 as a molecular genetics tool: in vitro transposition and the coupling of in vitro technologies with in vivo transposition. Methods Mol Biol 260:83–96. https://doi.org/10.1385/1-59259-755-6:083

    Article  CAS  PubMed  Google Scholar 

  13. Lamberg A, Nieminen S, Qiao M, Savilahti H (2002) Efficient insertion mutagenesis strategy for bacterial genomes involving electroporation of in vitro-assembled DNA transposition complexes of bacteriophage mu. Appl Environ Microbiol 68:705–712. https://doi.org/10.1128/AEM.68.2.705-712.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ruiz L, Motherway MO, Lanigan N, van Sinderen D (2013) Transposon mutagenesis in Bifidobacterium breve: construction and characterization of a Tn5 transposon mutant library for Bifidobacterium breve UCC2003. PLoS One 8:e64699. https://doi.org/10.1371/journal.pone.0064699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Alvarez-Martin P, Belen Florez A, Margolles A et al (2008) Improved cloning vectors for bifidobacteria, based on the Bifidobacterium catenulatum pBC1 replicon. Appl Environ Microbiol 74:4656–4665. https://doi.org/10.1128/AEM.00074-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Johnson RC, Reznikoff WS (1983) DNA sequences at the ends of transposon Tn5 required for transposition. Nature 304:280–282. https://doi.org/10.1038/304280a0

    Article  CAS  PubMed  Google Scholar 

  17. Flórez AB, Ammor MS, Alvarez-Martín P et al (2006) Molecular analysis of tet(W) gene-mediated tetracycline resistance in dominant intestinal Bifidobacterium species from healthy humans. Appl Environ Microbiol 72:7377–73799. https://doi.org/10.1128/AEM.00486-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Barquist L, Boinett CJ, Cain AK (2013) Approaches to querying bacterial genomes with transposon-insertion sequencing. RNA Biol 10:1161–1169. https://doi.org/10.4161/rna.24765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sambrook J, Russell DW (2006) Purification of nucleic acids by extraction with phenol:chloroform. CSH Protoc 2006(1). https://doi.org/10.1101/pdb.prot4455

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douwe van Sinderen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ruiz, L., van Sinderen, D. (2019). Implementation of Transposon Mutagenesis in Bifidobacterium . In: Ricke, S., Park, S., Davis, M. (eds) Microbial Transposon Mutagenesis. Methods in Molecular Biology, vol 2016. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9570-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9570-7_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9569-1

  • Online ISBN: 978-1-4939-9570-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics