Skip to main content

Making Microfluidic Devices that Simulate Phloem Transport

  • Protocol
  • First Online:
Phloem

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2014))

Abstract

Phloem tissues are exquisitely difficult to probe experimentally. The biomimetic approach based on synthetic phloem devices might prove useful by allowing to uncover the dynamics and physicochemical couplings of the phloem. In this chapter we discuss the design of a synthetic microfluidic device simulating phloem transport, and the importance of such a device in testing various hypotheses of phloem physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Münch E (1930) Die Stoffbewegungen in der Pflanze. Gustav Fischer, Jena

    Google Scholar 

  2. Münch E (1927) Versuche über den Saftkreislauf. Ber Dtsch Bot Ges 45:340–356

    Google Scholar 

  3. Knoblauch M, Peters WS (2010) Münch, morphology, microfluidics—our structural problem with the phloem. Plant Cell Environ 33(9):1439–1452

    PubMed  Google Scholar 

  4. Eschrich W, Evert RF, Young JH (1972) Solution flow in tubular semipermeable membranes. Planta 107(4):279–300

    Article  CAS  Google Scholar 

  5. Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411

    Article  Google Scholar 

  6. Jensen KH, Lee J, Bohr T, Bruus H (2009) Osmotically driven flows in microchannels separated by a semipermeable membrane. Lab Chip 9:2093

    Article  CAS  Google Scholar 

  7. Jensen KH, Rio E, Hansen R, Clanet C, Bohr T (2009) Osmotically driven pipe flows and their relation to sugar transport in plants. J Fluid Mech 636:371–396

    Article  CAS  Google Scholar 

  8. Jensen KH, Lee J, Bohr T, Bruus H, Holbrook MN, Zwieniecki MA (2011) Optimality of the Münch mechanism for translocation of sugars in plants. J R Soc Interface 8(61):1155–1165

    Article  CAS  Google Scholar 

  9. Lang A (1973) A working model of a sieve tube. J Exp Bot 24:896–904

    Article  Google Scholar 

  10. Haaning LS, Jensen KVH, Hélix-Nielsen C, Berg-Sørensen K, Bohr T (2013) Efficiency of osmotic pipe flows. Phys Rev E 87(5):053019

    Article  Google Scholar 

  11. Comtet J, Jensen KH, Turgeon R, Stroock AD, Hosoi AE (2017) Passive phloem loading and long-distance transport in a synthetic tree-on-a-chip. Nat Plants 3(4):17032

    Article  CAS  Google Scholar 

  12. Stroock AD, Pagay VV, Zwieniecki MA, Holbrook MN (2014) The physicochemical hydrodynamics of vascular plants. Annu Rev Fluid Mech 46:615–642

    Article  Google Scholar 

  13. Rennie EA, Turgeon R (2009) A comprehensive picture of phloem loading strategies. Proc Natl Acad Sci U S A 106:14162–14167

    Article  CAS  Google Scholar 

  14. Comtet J, Turgeon R, Stroock A (2017) Phloem loading through plasmodesmata: a biophysical analysis. Plant Physiol 175(2):904–915

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Yuen PK, Goral VN (2010) Low-cost rapid prototyping of flexible microfluidic devices using a desktop digital craft cutter. Lab Chip 10(3):384–387

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Comtet, J. (2019). Making Microfluidic Devices that Simulate Phloem Transport. In: Liesche, J. (eds) Phloem. Methods in Molecular Biology, vol 2014. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9562-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9562-2_30

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9561-5

  • Online ISBN: 978-1-4939-9562-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics