Skip to main content

Using a Mathematical Model of Phloem Transport to Optimize Strategies for Crop Improvement

  • Protocol
  • First Online:
Phloem

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2014))

  • 1432 Accesses

Abstract

It is valuable to set an ideotype plant structure (i.e., ideal numbers and arrangement of sucrose sources, sinks, and pathways that maximize crop yield) as a goal for breeding with modern and near-future technologies. However, it is not easy to theoretically specify an ideotype because multiple factors need to be considered simultaneously. Here a method to obtain plant ideotypes using a simple mathematical model is described. The model identifies plant structures with maximal yield through a series of simulations of the dynamic changes in sucrose concentration at different positions of the plant. Originally developed for rice, this revised method can be applied to a wide range of crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Donald CM (1968) The breeding of crop ideotypes. Euphytica 17:385–403

    Article  Google Scholar 

  2. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A et al (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745

    Article  CAS  Google Scholar 

  3. Melzer S, Lens F, Gennen J, Vanneste S, Rohde A, Beeckman T (2008) Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana. Nat Genet 40:1489–1492

    Article  CAS  Google Scholar 

  4. Himeno M, Neriya Y, Minato N, Miura C, Sugawara K, Ishii Y et al (2011) Unique morphological changes in plant pathogenic phytoplasma-infected petunia flowers are related to transcriptional regulation of floral homeotic genes in an organ-specific manner. Plant J 67:971–979

    Article  CAS  Google Scholar 

  5. Münch E (1930) Die stoffbewegung in der pflanze. Fischer, Jena. (in German)

    Google Scholar 

  6. Dewar RC (1993) A root–shoot partitioning model based on carbon–nitrogen–water interactions and Münch phloem flow. Funct Ecol 7:356–368

    Article  Google Scholar 

  7. Minchin PEH, Thorpe MR, Farrar JF (1993) A simple mechanistic model of phloem transport which explains sink priority. J Exp Bot 44:947–955

    Article  Google Scholar 

  8. Daudet FA, Lacointe A, Gaudillère JP, Cruiziat P (2002) Generalized Münch coupling between sugar and water fluxes for modelling carbon allocation as affected by water status. J Theor Biol 214:481–498

    Article  CAS  Google Scholar 

  9. Thompson MV, Holbrook NM (2003) Application of a single-solute non-steady-state phloem model to the study of long-distance assimilate transport. J Theor Biol 220:419–455

    Article  Google Scholar 

  10. Lacointe A, Minchin PE (2008) Modelling phloem and xylem transport within a complex architecture. Funct Plant Biol 35:772–780

    Article  Google Scholar 

  11. Hölttä T, Mencuccini M, Nikinmaa E (2009) Linking phloem function to structure: analysis with a coupled xylem–phloem transport model. J Theor Biol 259:325–337

    Article  Google Scholar 

  12. Seki M, Feugier FG, Song XJ, Ashikari M, Nakamura H, Ishiyama K et al (2014) A mathematical model of phloem sucrose transport as a new tool for designing rice panicle structure for high grain yield. Plant Cell Physiol 56:605–619

    Article  Google Scholar 

  13. Satake A, Seki M, Iima M, Teramoto T, Nishiura Y (2016) Florigen distribution determined by a source–sink balance explains the diversity of inflorescence structures in Arabidopsis. J Theor Biol 395:227–237

    Article  CAS  Google Scholar 

  14. Ohara T, Satake A (2017) Photosynthetic entrainment of the circadian clock facilitates plant growth under environmental fluctuations: perspectives from an integrated model of phase oscillator and phloem transportation. Front Plant Sci 8:1859

    Article  Google Scholar 

  15. Ikeda M, Hirose Y, Takashi T, Shibata Y, Yamamura T, Komura T et al (2010) Analysis of rice panicle traits and detection of QTLs using an image analyzing method. Breed Sci 60:55–64

    Article  Google Scholar 

  16. Gibon Y, Bläsing OE, Palacios-Rojas N, Pankovic D, Hendriks JH, Fisahn J et al (2004) Adjustment of diurnal starch turnover to short days: depletion of sugar during the night leads to a temporary inhibition of carbohydrate utilization, accumulation of sugars and post-translational activation of ADP-glucose pyrophosphorylase in the following light period. Plant J 39:847–862

    Article  CAS  Google Scholar 

  17. Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630

    Article  CAS  Google Scholar 

  18. Yang J, Zhang J, Wang Z, Liu K, Wang P (2006) Post-anthesis development of inferior and superior spikelets in rice in relation to abscisic acid and ethylene. J Exp Bot 57:149–160

    Article  CAS  Google Scholar 

  19. Lang A (1978) A model of mass flow in the phloem. Aust J Plant Physiol 5:535–546

    Google Scholar 

  20. Durand M (2006) Architecture of optimal transport networks. Phys Rev E 73:016116

    Article  Google Scholar 

  21. McCulloh KA, Sperry JS, Adler FR (2003) Water transport in plants obeys Murray’s law. Nature 421:939–942

    Article  CAS  Google Scholar 

  22. Carvalho MR, Losada JM, Niklas KJ (2018) Phloem networks in leaves. Curr Opin Plant Biol 43:29–35

    Article  Google Scholar 

Download references

Acknowledgments

I thank F. G. Feugier, X. Song, M. Ashikari, H. Nakamura, K. Ishiyama, T. Yamaya, M. Inari-Ikeda, H. Kitano, and A. Satake for their help in developing the present model.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Seki, M. (2019). Using a Mathematical Model of Phloem Transport to Optimize Strategies for Crop Improvement. In: Liesche, J. (eds) Phloem. Methods in Molecular Biology, vol 2014. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9562-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9562-2_29

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9561-5

  • Online ISBN: 978-1-4939-9562-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics