Skip to main content

Studying Phloem Loading with EDTA-Facilitated Phloem Exudate Collection and Analysis

  • Protocol
  • First Online:
Phloem

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2014))

Abstract

Sugars that are produced by photosynthesis in the leaves are transported in the phloem to heterotrophic sink tissues like roots, fruit, or flowers. Since sugars inside the highly specialized cells of the phloem move by bulk flow, it is the loading and unloading of sugars that determines the rates of allocation between organs. Here, a method is described for the relative quantification of sugars that are loaded into the phloem in leaves. It is based on EDTA-facilitated phloem exudate collection and, therefore, requires control experiments to exclude measurement artifacts. It can be applied to a wide range of plant species, including dicots, monocots, and trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fischer G (1931) Die Stoffbewegungen in der Pflanze. Nature 127:550–551

    Article  Google Scholar 

  2. Will T, Van Bel AJ (2006) Physical and chemical interactions between aphids and plants. J Exp Bot 57:729–737

    Article  CAS  Google Scholar 

  3. Doering-Saad C, Newbury HJ, Bale JS, Pritchard J (2002) Use of aphid stylectomy and RT-PCR for the detection of transporter mRNAs in sieve elements. J Exp Bot 53:631–637

    Article  CAS  Google Scholar 

  4. Kawabe S, Fukumorita T, Chino M (1980) Collection of rice phloem sap from stylets of homopterous insects severed by YAG laser. Plant Cell Physiol 21:1319–1327

    Article  CAS  Google Scholar 

  5. Hewer A, Becker A, Van Bel AJ (2011) An aphid’s odyssey--the cortical quest for the vascular bundl. J Exp Bot 214:3868–3879

    Article  CAS  Google Scholar 

  6. Kehr J (2006) Phloem sap proteins: their identities and potential roles in the interaction between plants and phloem-feeding insects. J Exp Bot 57:767–774

    Article  CAS  Google Scholar 

  7. Walz C, Giavalisco P, Schad M, Juenger M, Klose J, Kehr J (2004) Proteomics of curcurbit phloem exudate reveals a network of defence proteins. Phytochemistry 65:1795–1804

    Article  CAS  Google Scholar 

  8. Hoffmann-Benning S, Gage DA, McIntosh L, Kende H, Zeevaart JA (2002) Comparison of peptides in the phloem sap of flowering and non-flowering Perilla and lupine plants using microbore HPLC followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometr. Planta 216:140–147

    Article  CAS  Google Scholar 

  9. Tetyuk O, Benning UF, Hoffmann-Benning S (2013) Collection and analysis of Arabidopsis phloem exudates using the EDTA-facilitated method. J Vis Exp 80:e51111

    Google Scholar 

  10. Zhang B, Tolstikov V, Turnbull C, Hicks LM, Fiehn O (2010) Divergent metabolome and proteome suggest functional independence of dual phloem transport systems in cucurbits. Proc Natl Acad Sci U S A 107:13532–13537

    Article  CAS  Google Scholar 

  11. Zhang C, Yu X, Ayre BG, Turgeon R (2012) The origin and composition of cucurbit “phloem” exudate. Plant Physiol 158:1873–1882

    Article  CAS  Google Scholar 

  12. King RW, Zeevaart JA (1974) Enhancement of phloem exudation from cut petioles by chelating agents. Plant Physiol 53:96–103

    Article  CAS  Google Scholar 

  13. Liu DD, Chao WM, Robert T (2012) Transport of sucrose, not hexose, in the phloem. J Exp Bot 63:4315

    Article  CAS  Google Scholar 

  14. Turgeon R, Wolf S (2009) Phloem transport: cellular pathways and molecular trafficking. Annu Rev Plant Biol 60:207–221

    Article  CAS  Google Scholar 

  15. Yadav UP, Khadilkar AS, Shaikh MA, Turgeon R, Ayre BG (2017) Assessing rates of long-distance carbon transport in Arabidopsis by collecting phloem exudations into edta solutions after photosynthetic labeling with [14C]CO2. Bio Protoc 7(24):e2656

    Google Scholar 

  16. Xu Q, Chen S, Yunjuan R, Chen S, Liesche J (2018) Regulation of sucrose transporters and phloem loading in response to environmental cues. Plant Physiol 176:930–945

    Article  CAS  Google Scholar 

  17. Hijaz F, Manthey JA, Van der Merwe D, Killiny N (2016) Nucleotides, micro- and macro-nutrients, limonoids, flavonoids, and hydroxycinnamates composition in the phloem sap of sweet orange. Plant Signal Behav 11:e1183084

    Article  Google Scholar 

  18. Deeken R, Ache P, Kajahn I, Klinkenberg J, Bringmann G, Hedrich R (2008) Identification of Arabidopsis thaliana phloem RNAs provides a search criterion for phloem-based transcripts hidden in complex datasets of microarray experiments. Plant J 55:746–759

    Article  CAS  Google Scholar 

  19. Gourieroux AM, Holzapfel BP, Scollary GR, McCully ME, Canny MJ, Rogiers SY (2016) The amino acid distribution in rachis xylem sap and phloem exudate of Vitis vinifera ‘Cabernet Sauvignon’ bunches. Plant Physiol Biochem 105:45–54

    Article  CAS  Google Scholar 

  20. Yesbergenova-Cuny Z, Dinant S, Martin-Magniette ML, Quilleré I, Armengaud P, Monfalet P et al (2016) Genetic variability of the phloem sap metabolite content of maize (Zea mays L.) during the kernel-filling period. Plant Sci 252:347–357

    Article  CAS  Google Scholar 

  21. Dinant S, Bonnemain JL, Girousse C, Kehr J (2010) Phloem sap intricacy and interplay with aphid feeding. C R Biol 333:504–515

    Article  Google Scholar 

  22. Van Bel AJ, Hess PH (2008) Hexoses as phloem transport sugars: the end of a dogma. J Exp Bot 59:261–272

    Article  Google Scholar 

  23. Guelette BS, Benning UF, Hoffmann-benning S (2012) Identification of lipids and lipid-binding proteins in phloem exudates from Arabidopsis thaliana. J Exp Bot 63:3603–3616

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Liesche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Xu, Q., Ren, Y., Liesche, J. (2019). Studying Phloem Loading with EDTA-Facilitated Phloem Exudate Collection and Analysis. In: Liesche, J. (eds) Phloem. Methods in Molecular Biology, vol 2014. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9562-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9562-2_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9561-5

  • Online ISBN: 978-1-4939-9562-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics