Skip to main content

Gastrointestinal Complications in Chronic Granulomatous Disease

  • Protocol
  • First Online:
NADPH Oxidases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1982))

Abstract

Almost half of patients with chronic granulomatous disease (CGD) suffer from gastrointestinal (GI) inflammation, the pathogenesis of which is complex and multifactorial. As a result, the management of CGD-associated GI inflammation remains challenging due to its chronicity and difficulty in managing the simultaneous need for immunomodulation with increased susceptibility to infection. In order to contextualize prospective treatment interventions for CGD-associated GI inflammation, we have reviewed the clinical presentation, pathogenesis and current management of this disease. Increased understanding of the role of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex 2 (NOX2)-derived reactive oxygen species (ROS) in inflammatory bowel disease (IBD) will likely reveal novel targets for therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnold DE, Heimall JR (2017) A review of chronic granulomatous disease. Adv Ther 34(12):2543–2557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kuhns DB, Alvord WG, Heller T, Feld JJ, Pike KM, Marciano BE et al (2010) Residual NADPH oxidase and survival in chronic granulomatous disease. N Engl J Med 363(27):2600–2610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Marks DJ, Miyagi K, Rahman FZ, Novelli M, Bloom SL, Segal AW (2009) Inflammatory bowel disease in CGD reproduces the clinicopathological features of Crohn’s disease. Am J Gastroenterol 104(1):117–124

    Article  CAS  PubMed  Google Scholar 

  4. Alimchandani M, Lai JP, Aung PP, Khangura S, Kamal N, Gallin JI et al (2013) Gastrointestinal histopathology in chronic granulomatous disease: a study of 87 patients. Am J Surg Pathol 37(9):1365–1372

    Article  PubMed  PubMed Central  Google Scholar 

  5. Khangura SK, Kamal N, Ho N, Quezado M, Zhao X, Marciano B et al (2016) Gastrointestinal features of chronic granulomatous disease found during endoscopy. Clin Gastroenterol Hepatol 14(3):395–402 e5

    Article  PubMed  Google Scholar 

  6. Marciano BE, Rosenzweig SD, Kleiner DE, Anderson VL, Darnell DN, Anaya-O'Brien S et al (2004) Gastrointestinal involvement in chronic granulomatous disease. Pediatrics 114(2):462–468

    Article  PubMed  Google Scholar 

  7. Magnani A, Brosselin P, Beaute J, de Vergnes N, Mouy R, Debre M et al (2014) Inflammatory manifestations in a single-center cohort of patients with chronic granulomatous disease. J Allergy Clin Immunol 134(3):655–62 e8

    Article  PubMed  Google Scholar 

  8. Marciano BE, Spalding C, Fitzgerald A, Mann D, Brown T, Osgood S et al (2015) Common severe infections in chronic granulomatous disease. Clin Infect Dis 60(8):1176–1183

    Article  CAS  PubMed  Google Scholar 

  9. Labrosse R, Abou-Diab J, Blincoe A, Cros G, Luu TM, Deslandres C et al (2017) Very early-onset inflammatory manifestations of X-linked chronic granulomatous disease. Front Immunol 8:1167

    Article  PubMed  PubMed Central  Google Scholar 

  10. Damen GM, van Krieken JH, Hoppenreijs E, van Os E, Tolboom JJ, Warris A et al (2010) Overlap, common features, and essential differences in pediatric granulomatous inflammatory bowel disease. J Pediatr Gastroenterol Nutr 51(6):690–697

    Article  PubMed  Google Scholar 

  11. Heltzer M, Jawad AF, Rae J, Curnutte JT, Sullivan KE, Diminished T (2002) cell numbers in patients with chronic granulomatous disease. Clin Immunol 105(3):273–278

    Article  CAS  PubMed  Google Scholar 

  12. Albuquerque AS, Fernandes SM, Tendeiro R, Cheynier R, Lucas M, Silva SL et al (2017) Major CD4 T-cell depletion and immune senescence in a patient with chronic granulomatous disease. Front Immunol 8:543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. de Luca A, Smeekens SP, Casagrande A, Iannitti R, Conway KL, Gresnigt MS et al (2014) IL-1 receptor blockade restores autophagy and reduces inflammation in chronic granulomatous disease in mice and in humans. Proc Natl Acad Sci U S A 111(9):3526–3531

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Montes-Berrueta D, Ramirez L, Salmen S, Berrueta L (2012) Fas and FasL expression in leukocytes from chronic granulomatous disease patients. Invest Clin 53(2):157–167

    PubMed  Google Scholar 

  15. Jackson SH, Devadas S, Kwon J, Pinto LA, Williams MS (2004) T cells express a phagocyte-type NADPH oxidase that is activated after T cell receptor stimulation. Nat Immunol 5(8):818–827

    Article  CAS  PubMed  Google Scholar 

  16. Padgett LE (2016) Tse HM. NADPH oxidase-derived superoxide provides a third signal for CD4 T cell effector responses. J Immunol 197(5):1733–1742

    Article  CAS  PubMed  Google Scholar 

  17. Kwon BI, Kim TW, Shin K, Kim YH, Yuk CM, Yuk JM et al (2017) Enhanced Th2 cell differentiation and function in the absence of Nox2. Allergy 72(2):252–265

    Article  CAS  PubMed  Google Scholar 

  18. Wen Z, Shimojima Y, Shirai T, Li Y, Ju J, Yang Z et al (2016) NADPH oxidase deficiency underlies dysfunction of aged CD8+ Tregs. J Clin Invest 126(5):1953–1967

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gabrion A, Hmitou I, Moshous D, Neven B, Lefevre-Utile A, Diana JS et al (2017) Mammalian target of rapamycin inhibition counterbalances the inflammatory status of immune cells in patients with chronic granulomatous disease. J Allergy Clin Immunol 139(5):1641–9 e6

    Article  CAS  PubMed  Google Scholar 

  20. Horvath R, Rozkova D, Lastovicka J, Polouckova A, Sedlacek P, Sediva A et al (2011) Expansion of T helper type 17 lymphocytes in patients with chronic granulomatous disease. Clin Exp Immunol 166(1):26–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu S, Russo PA, Baldassano RN, Sullivan KE (2009) CD68 expression is markedly different in Crohn's disease and the colitis associated with chronic granulomatous disease. Inflamm Bowel Dis 15(8):1213–1217

    Article  PubMed  Google Scholar 

  22. De Ravin SS, Naumann N, Cowen EW, Friend J, Hilligoss D, Marquesen M et al (2008) Chronic granulomatous disease as a risk factor for autoimmune disease. J Allergy Clin Immunol 122(6):1097–1103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Bao S, Carr ED, Xu YH, Hunt NH (2011) Gp91(phox) contributes to the development of experimental inflammatory bowel disease. Immunol Cell Biol 89(8):853–860

    Article  CAS  PubMed  Google Scholar 

  24. Pircalabioru G, Aviello G, Kubica M, Zhdanov A, Paclet MH, Brennan L et al (2016) Defensive mutualism rescues NADPH oxidase inactivation in gut infection. Cell Host Microbe 19(5):651–663

    Article  CAS  PubMed  Google Scholar 

  25. Campbell EL, Bruyninckx WJ, Kelly CJ, Glover LE, McNamee EN, Bowers BE et al (2014) Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution of inflammation. Immunity 40(1):66–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Conway KL, Goel G, Sokol H, Manocha M, Mizoguchi E, Terhorst C et al (2012) p40phox expression regulates neutrophil recruitment and function during the resolution phase of intestinal inflammation. J Immunol 189(7):3631–3640

    Article  CAS  PubMed  Google Scholar 

  27. Krieglstein CF, Cerwinka WH, Laroux FS, Salter JW, Russell JM, Schuermann G et al (2001) Regulation of murine intestinal inflammation by reactive metabolites of oxygen and nitrogen: divergent roles of superoxide and nitric oxide. J Exp Med 194(9):1207–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rodrigues-Sousa T, Ladeirinha AF, Santiago AR, Carvalheiro H, Raposo B, Alarcao A et al (2014) Deficient production of reactive oxygen species leads to severe chronic DSS-induced colitis in Ncf1/p47phox-mutant mice. PLoS One 9(5):e97532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Falcone EL, Abusleme L, Swamydas M, Lionakis MS, Ding L, Hsu AP et al (2016) Colitis susceptibility in p47(phox−/−) mice is mediated by the microbiome. Microbiome 4:13

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fattouh R, Guo CH, Lam GY, Gareau MG, Ngan BY, Glogauer M et al (2013) Rac2-deficiency leads to exacerbated and protracted colitis in response to Citrobacter rodentium infection. PLoS One 8(4):e61629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Diebold BA, Bokoch GM (2001) Molecular basis for Rac2 regulation of phagocyte NADPH oxidase. Nat Immunol 2(3):211–215

    Article  CAS  PubMed  Google Scholar 

  32. Dorseuil O, Reibel L, Bokoch GM, Camonis J, Gacon G (1996) The Rac target NADPH oxidase p67phox interacts preferentially with Rac2 rather than Rac1. J Biol Chem 271(1):83–88

    Article  CAS  PubMed  Google Scholar 

  33. Aviello G, Knaus UG (2017) ROS in gastrointestinal inflammation: rescue or Sabotage? Br J Pharmacol 174:1704–1718

    Article  CAS  PubMed  Google Scholar 

  34. Holmstrom KM, Finkel T (2014) Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 15(6):411–421

    Article  CAS  PubMed  Google Scholar 

  35. Leoni G, Alam A, Neumann PA, Lambeth JD, Cheng G, McCoy J et al (2013) Annexin A1, formyl peptide receptor, and NOX1 orchestrate epithelial repair. J Clin Invest 123(1):443–454

    Article  CAS  PubMed  Google Scholar 

  36. Jones RM, Luo L, Ardita CS, Richardson AN, Kwon YM, Mercante JW et al (2013) Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species. EMBO J 32(23):3017–3028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245–313

    Article  CAS  PubMed  Google Scholar 

  38. Rada B, Leto TL (2008) Oxidative innate immune defenses by Nox/Duox family NADPH oxidases. Contrib Microbiol 15:164–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Treton X, Pedruzzi E, Guichard C, Ladeiro Y, Sedghi S, Vallee M et al (2014) Combined NADPH oxidase 1 and interleukin 10 deficiency induces chronic endoplasmic reticulum stress and causes ulcerative colitis-like disease in mice. PLoS One 9(7):e101669

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Coant N, Ben Mkaddem S, Pedruzzi E, Guichard C, Treton X, Ducroc R et al (2010) NADPH oxidase 1 modulates WNT and NOTCH1 signaling to control the fate of proliferative progenitor cells in the colon. Mol Cell Biol 30(11):2636–2650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Swanson PA 2nd, Kumar A, Samarin S, Vijay-Kumar M, Kundu K, Murthy N et al (2011) Enteric commensal bacteria potentiate epithelial restitution via reactive oxygen species-mediated inactivation of focal adhesion kinase phosphatases. Proc Natl Acad Sci U S A 108(21):8803–8808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Geiszt M, Kopp JB, Varnai P, Leto TL (2000) Identification of renox, an NAD(P)H oxidase in kidney. Proc Natl Acad Sci U S A 97(14):8010–8014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sommer F, Backhed F (2015) The gut microbiota engages different signaling pathways to induce Duox2 expression in the ileum and colon epithelium. Mucosal Immunol 8(2):372–379

    Article  CAS  PubMed  Google Scholar 

  44. Grasberger H, Gao J, Nagao-Kitamoto H, Kitamoto S, Zhang M, Kamada N et al (2015) Increased expression of DUOX2 is an epithelial response to mucosal dysbiosis required for immune homeostasis in mouse intestine. Gastroenterology 149(7):1849–1859

    Article  CAS  PubMed  Google Scholar 

  45. MacFie TS, Poulsom R, Parker A, Warnes G, Boitsova T, Nijhuis A et al (2014) DUOX2 and DUOXA2 form the predominant enzyme system capable of producing the reactive oxygen species H2O2 in active ulcerative colitis and are modulated by 5-aminosalicylic acid. Inflamm Bowel Dis 20(3):514–524

    Article  PubMed  Google Scholar 

  46. Dhillon SS, Fattouh R, Elkadri A, Xu W, Murchie R, Walters T et al (2014) Variants in nicotinamide adenine dinucleotide phosphate oxidase complex components determine susceptibility to very early onset inflammatory bowel disease. Gastroenterology 147(3):680–9 e2

    Article  CAS  PubMed  Google Scholar 

  47. Hayes P, Dhillon S, O'Neill K, Thoeni C, Hui KY, Elkadri A et al (2015) Defects in NADPH oxidase genes and in very early onset inflammatory bowel disease. Cell Mol Gastroenterol Hepatol 1(5):489–502

    Article  PubMed  PubMed Central  Google Scholar 

  48. Schwerd T, Bryant RV, Pandey S, Capitani M, Meran L, Cazier JB et al (2018) NOX1 loss-of-function genetic variants in patients with inflammatory bowel disease. Mucosal Immunol 11:562–574

    Article  CAS  PubMed  Google Scholar 

  49. Parlato M, Charbit-Henrion F, Hayes P, Tiberti A, Aloi M, Cucchiara S et al (2017) First identification of biallelic inherited DUOX2 inactivating mutations as a cause of very early onset inflammatory bowel disease. Gastroenterology 153(2):609–11 e3

    Article  PubMed  Google Scholar 

  50. Magnani A, Mahlaoui N (2016) Managing inflammatory manifestations in patients with chronic granulomatous disease. Paediatr Drugs 18(5):335–345

    Article  PubMed  Google Scholar 

  51. Maltzman JS, Koretzky GA (2003) Azathioprine: old drug, new actions. J Clin Invest 111(8):1122–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Seger RA (2010) Chronic granulomatous disease: recent advances in pathophysiology and treatment. Neth J Med 68(11):334–340

    CAS  PubMed  Google Scholar 

  53. Arlet JB, Aouba A, Suarez F, Blanche S, Valeyre D, Fischer A et al (2008) Efficiency of hydroxychloroquine in the treatment of granulomatous complications in chronic granulomatous disease. Eur J Gastroenterol Hepatol 20(2):142–144

    Article  CAS  PubMed  Google Scholar 

  54. Rosh JR, Tang HB, Mayer L, Groisman G, Abraham SK, Prince A (1995) Treatment of intractable gastrointestinal manifestations of chronic granulomatous disease with cyclosporine. J Pediatr 126(1):143–145

    Article  CAS  PubMed  Google Scholar 

  55. Noel N, Mahlaoui N, Blanche S, Suarez F, Coignard-Biehler H, Durieu I et al (2013) Efficacy and safety of thalidomide in patients with inflammatory manifestations of chronic granulomatous disease: a retrospective case series. J Allergy Clin Immunol 132(4):997–1000 e1–4

    Article  CAS  PubMed  Google Scholar 

  56. Fernandez-Boyanapalli RF, Frasch SC, Thomas SM, Malcolm KC, Nicks M, Harbeck RJ et al (2015) Pioglitazone restores phagocyte mitochondrial oxidants and bactericidal capacity in chronic granulomatous disease. J Allergy Clin Immunol 135(2):517–27 e12

    Article  CAS  PubMed  Google Scholar 

  57. Fernandez-Boyanapalli RF, Falcone EL, Zerbe CS, Marciano BE, Frasch SC, Henson PM et al (2015) Impaired efferocytosis in human chronic granulomatous disease is reversed by pioglitazone treatment. J Allergy Clin Immunol 136(5):1399–401 e1–3

    Article  PubMed  PubMed Central  Google Scholar 

  58. Migliavacca M, Assanelli A, Ferrua F, Cicalese MP, Biffi A, Frittoli M et al (2016) Pioglitazone as a novel therapeutic approach in chronic granulomatous disease. J Allergy Clin Immunol 137(6):1913–5 e2

    Article  PubMed  PubMed Central  Google Scholar 

  59. van de Veerdonk FL, Smeekens SP, Joosten LA, Kullberg BJ, Dinarello CA, van der Meer JW et al (2010) Reactive oxygen species-independent activation of the IL-1beta inflammasome in cells from patients with chronic granulomatous disease. Proc Natl Acad Sci U S A 107(7):3030–3033

    Article  PubMed  PubMed Central  Google Scholar 

  60. Meissner F, Seger RA, Moshous D, Fischer A, Reichenbach J, Zychlinsky A (2010) Inflammasome activation in NADPH oxidase defective mononuclear phagocytes from patients with chronic granulomatous disease. Blood 116(9):1570–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kim YC, Guan KL (2015) mTOR: a pharmacologic target for autophagy regulation. J Clin Invest 125(1):25–32

    Article  PubMed  PubMed Central  Google Scholar 

  62. Uzel G, Orange JS, Poliak N, Marciano BE, Heller T, Holland SM (2010) Complications of tumor necrosis factor-alpha blockade in chronic granulomatous disease-related colitis. Clin Infect Dis 51(12):1429–1434

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hahn KJ, Ho N, Yockey L, Kreuzberg S, Daub J, Rump A et al (2015) Treatment with anakinra, a recombinant IL-1 receptor antagonist, unlikely to induce lasting remission in patients with CGD colitis. Am J Gastroenterol 110(6):938–939

    Article  CAS  PubMed  Google Scholar 

  64. Campbell N, Chapdelaine H (2017) Treatment of chronic granulomatous disease-associated fistulising colitis with vedolizumab. J Allergy Clin Immunol Pract 5(6):1748–1749

    Article  PubMed  Google Scholar 

  65. Zerbe CS, Kreuzburg SA, Daub J, Marciano BE, Strongin A, Holland S et al (2017) Vedolizumab in chronic granulomatous disease: a safe and promising bridge therapy for CGD related colitis. J Clin Immunol 37(2):235

    Google Scholar 

  66. Hohenberger M, Cardwell LA, Oussedik E, Feldman SR (2018) Interleukin-17 inhibition: role in psoriasis and inflammatory bowel disease. J Dermatolog Treat 29(1):13–18

    Article  CAS  PubMed  Google Scholar 

  67. Wang R, Hasnain SZ, Tong H, Das I, Che-Hao Chen A, Oancea I et al (2015) Neutralizing IL-23 is superior to blocking IL-17 in suppressing intestinal inflammation in a spontaneous murine colitis model. Inflamm Bowel Dis 21(5):973–984

    Article  PubMed  Google Scholar 

  68. Butte MJ, Park KT, Lewis DB (2016) Treatment of CGD-associated Colitis with the IL-23 blocker ustekinumab. J Clin Immunol 36(7):619–620

    Article  PubMed  PubMed Central  Google Scholar 

  69. Leiding JW, Logan BR, Yin Z, Arbuckle E, Bleesing JJ, Sullivan KE et al (2018) Resolution of CGD related colitis after allogeneic hematopoietic stem cell transplantation in patients with chronic granulomatous disease-early results from the 6903 study of the Primary Immune Deficiency Treatment Consortium (PIDTC). Biol Blood Marrow Transplant 24(3):S53–SS4

    Article  Google Scholar 

  70. Falcone EL (2016) Intestinal inflammation in chronic granulomatous disease: reactive oxygen species interact with the microbiome at the intestinal barrier (unpublished doctoral dissertation). University of Cambridge, Cambridge, United Kingdom

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Liana Falcone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Falcone, E.L., Holland, S.M. (2019). Gastrointestinal Complications in Chronic Granulomatous Disease. In: Knaus, U., Leto, T. (eds) NADPH Oxidases. Methods in Molecular Biology, vol 1982. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9424-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9424-3_34

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9423-6

  • Online ISBN: 978-1-4939-9424-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics